Publications by authors named "Barry A Cragg"

The Gulf of Cádiz is a tectonically active continental margin with over sixty mud volcanoes (MV) documented, some associated with active methane (CH) seepage. However, the role of prokaryotes in influencing this CH release is largely unknown. In two expeditions (MSM1-3 and JC10) seven Gulf of Cádiz MVs (Porto, Bonjardim, Carlos Ribeiro, Captain Arutyunov, Darwin, Meknes, and Mercator) were analyzed for microbial diversity, geochemistry, and methanogenic activity, plus substrate amended slurries also measured potential methanogenesis and anaerobic oxidation of methane (AOM).

View Article and Find Full Text PDF

Viruses are ubiquitous and cause significant mortality in marine bacterial and archaeal communities. Little is known about the role of viruses in the sub-seafloor biosphere, which hosts a large fraction of all microbes on Earth. We quantified and characterized viruses in sediments from the Baltic Sea.

View Article and Find Full Text PDF

The impact of temperature (0-80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.

View Article and Find Full Text PDF

In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth.

View Article and Find Full Text PDF

Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data.

View Article and Find Full Text PDF

A new presence/absence method has been developed to count fluorochrome-stained bacterial and archaeal cells on membrane filters using epifluorescence microscopy. This approach was derived from the random distribution of cells on membranes that allowed the use of the Poisson distribution to estimate total cell densities. Comparison with the standard Acridine Orange Direct Count (AODC) technique shows no significant difference in the estimation of total cell populations, or any reduction in the precision of these estimations.

View Article and Find Full Text PDF

Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited.

View Article and Find Full Text PDF

The prokaryotic activity, diversity and culturability of diffusion-controlled Aarhus Bay sediments, including the sulphate-methane transition zone (SMTZ), were determined using a combination of geochemical, molecular (16S rRNA and mcrA genes) and cultivation techniques. The SMTZ had elevated sulphate reduction and anaerobic oxidation of methane, and enhanced cell numbers, but no active methanogenesis. The prokaryotic population was similar to that in other SMTZs, with Deltaproteobacteria, Gammaproteobacteria, JS1, Planctomycetes, Chloroflexi, ANME-1, MBG-D and MCG.

View Article and Find Full Text PDF

Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates.

View Article and Find Full Text PDF

The Porcupine Seabight Challenger Mound is the first carbonate mound to be drilled (approximately 270 m) and analyzed in detail microbiologically and biogeochemically. Two mound sites and a non-mound Reference site were analyzed with a range of molecular techniques [catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), quantitative PCR (16S rRNA and functional genes, dsrA and mcrA), and 16S rRNA gene PCR-DGGE] to assess prokaryotic diversity, and this was compared with the distribution of total and culturable cell counts, radiotracer activity measurements and geochemistry. There was a significant and active prokaryotic community both within and beneath the carbonate mound.

View Article and Find Full Text PDF

The deep subseafloor biosphere supports a diverse population of prokaryotes belonging to the Bacteria and Archaea. Most of the taxonomic groups identified by molecular methods contain mainly uncultured phylotypes. Despite this several cultured strains have been isolated from this habitat, but they probably do not represent the majority of the population.

View Article and Find Full Text PDF

Sub-sea-floor sediments may contain two-thirds of Earth's total prokaryotic biomass. However, this has its basis in data extrapolation from ~500-meter to 4-kilometer depths, whereas the deepest documented prokaryotes are from only 842 meters. Here, we provide evidence for low concentrations of living prokaryotic cells in the deepest (1626 meters below the sea floor), oldest (111 million years old), and potentially hottest (~100 degrees C) marine sediments investigated.

View Article and Find Full Text PDF

This biogeochemical, molecular genetic and lipid biomarker study of sediments ( approximately 4 m cores) from the Skagerrak (Denmark) investigated methane cycling in a sediment with a clear sulfate-methane-transition zone (SMTZ) and where CH(4) supply was by diffusion, rather than by advection, as in more commonly studied seep sites. Sulfate reduction removed sulfate by 0.7 m and CH(4) accumulated below.

View Article and Find Full Text PDF

The aim of this work was to relate depth profiles of prokaryotic community composition with geochemical processes in the deep subseafloor biosphere at two shallow-water sites on the Peru Margin in the Pacific Ocean (ODP Leg 201, sites 1228 and 1229). Principal component analysis of denaturing gradient gel electrophoresis banding patterns of deep-sediment Bacteria, Archaea, Euryarchaeota and the novel candidate division JS1, followed by multiple regression, showed strong relationships with prokaryotic activity and geochemistry (R(2)=55-100%). Further correlation analysis, at one site, between the principal components from the community composition profiles for Bacteria and 12 other variables quantitatively confirmed their relationship with activity and geochemistry, which had previously only been implied.

View Article and Find Full Text PDF

The community compositions of Bacteria and Archaea were investigated in deep, sub-seafloor sediments from the highly productive Peru Margin (ODP Leg 201, sites 1228 and 1229, c. 25 km apart) down to nearly 200 m below the seafloor using taxonomic (16S rRNA) and functional (mcrA and dsrA) gene markers. Bacterial and archaeal groups identified from clone libraries of 16S rRNA gene sequences at site 1229 agreed well with sequences amplified from bands excised from denaturing gradient gel electrophoresis (DGGE) depth profiles, with the exception of the Miscellaneous Crenarchaeotic Group (MCG).

View Article and Find Full Text PDF
Article Synopsis
  • The sub-seafloor is home to a lot of tiny living things called prokaryotes, but they mostly move really slowly and don’t do much.
  • Researchers studied two different places in the Pacific Ocean and found that, at one site 90 meters below the surface, prokaryote numbers and activities were much higher than expected.
  • They discovered that changes in the types of prokaryotes are linked to the chemistry of the sediment, and some prokaryotes can remain active for millions of years in deep sediments!
View Article and Find Full Text PDF

Chemical analyses of the pore waters from hundreds of deep ocean sediment cores have over decades provided evidence for ongoing processes that require biological catalysis by prokaryotes. This sub-seafloor activity of microorganisms may influence the surface Earth by changing the chemistry of the ocean and by triggering the emission of methane, with consequences for the marine carbon cycle and even the global climate. Despite the fact that only about 1% of the total marine primary production of organic carbon is available for deep-sea microorganisms, sub-seafloor sediments harbour over half of all prokaryotic cells on Earth.

View Article and Find Full Text PDF
Article Synopsis
  • Deeply buried sediments in the eastern Pacific Ocean host diverse microbial communities with various energy-yielding activities that differ from conventional models.
  • Rates of metabolic activities and bacterial populations vary significantly between different subseafloor environments.
  • Major metabolic activities depend on electron acceptors and donors from the surface, with open-ocean sites relying on nitrate and oxygen from basaltic aquifers to support sedimentary communities.
View Article and Find Full Text PDF

Diversity of Bacteria and Archaea was studied in deep marine sediments by PCR amplification and sequence analysis of 16S rRNA and methyl co-enzyme M reductase (mcrA) genes. Samples analysed were from Ocean Drilling Program (ODP) Leg 190 deep subsurface sediments at three sites spanning the Nankai Trough in the Pacific Ocean off Shikoku Island, Japan. DNA was amplified, from three depths at site 1173 (4.

View Article and Find Full Text PDF