Publications by authors named "Barrow K"

Epithelial cells secrete chloride to regulate water release at mucosal barriers, supporting both homeostatic hydration and the "weep" response that is critical for type 2 immune defense against parasitic worms (helminths). Epithelial tuft cells in the small intestine sense helminths and release cytokines and lipids to activate type 2 immune cells, but whether they regulate epithelial secretion is unknown. Here, we found that tuft cell activation rapidly induced epithelial chloride secretion in the small intestine.

View Article and Find Full Text PDF

Tuft cells are solitary chemosensory epithelial cells that can sense lumenal stimuli at mucosal barriers and secrete effector molecules to regulate the physiology and immune state of their surrounding tissue. In the small intestine, tuft cells detect parasitic worms (helminths) and microbe-derived succinate, and signal to immune cells to trigger a Type 2 immune response that leads to extensive epithelial remodeling spanning several days. Acetylcholine (ACh) from airway tuft cells has been shown to stimulate acute changes in breathing and mucocilliary clearance, but its function in the intestine is unknown.

View Article and Find Full Text PDF

Background: Mast cells (MCs) within the airway epithelium in asthma are closely related to airway dysfunction, but cross talk between airway epithelial cells (AECs) and MCs in asthma remains incompletely understood. Human rhinovirus (RV) infections are key triggers for asthma progression, and AECs from individuals with asthma may have dysregulated antiviral responses.

Objective: We utilized primary AECs in an ex vivo coculture model system to examine cross talk between AECs and MCs after epithelial rhinovirus infection.

View Article and Find Full Text PDF

Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses. In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-β or IFN-λ, modified SARS-CoV-2 replication.

View Article and Find Full Text PDF

Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (HS) plays an essential role in preserving cardiac functions. Angiotensin-converting enzyme 2 (ACE2) acts as the negative regulator of the renin-angiotensin system, exerting anti-oxidative stress and anti-inflammatory properties within the body. The interplays of CSE/HS signaling and ACE2 in cardiac aging are unclear.

View Article and Find Full Text PDF

SARS-CoV-2 gains entrance to airway epithelial cells (AECs) through binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) on the cell surface. However, ACE2 also converts angiotensin II into angiotensin-(1-7) and counterbalances the renin-angiotensin-aldosterone system, with resultant protective effects in the cardiovascular system. Some data suggest that two common antihypertension medications (angiotensin II receptor antagonists, ARBs; and angiotensin-converting-enzyme inhibitors, ACEIs) may increase ACE2 expression in heart and kidney cells, fueling debate about how these widely used medications may modulate SARS-CoV-2 infectivity and risk of COVID-19.

View Article and Find Full Text PDF

Introduction: Common alphacoronaviruses and human rhinoviruses (HRV) induce type I and III interferon (IFN) responses important to limiting viral replication in the airway epithelium. In contrast, highly pathogenic betacoronaviruses including SARS-CoV-2 may evade or antagonize RNA-induced IFN I/III responses.

Methods: In airway epithelial cells (AECs) from children and older adults we compared IFN I/III responses to SARS-CoV-2 and HRV-16, and assessed whether pre-infection with HRV-16, or pretreatment with recombinant IFN-β or IFN-λ, modified SARS-CoV-2 replication.

View Article and Find Full Text PDF

Background: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce.

View Article and Find Full Text PDF

SAMD9L is an interferon-induced tumor suppressor implicated in a spectrum of multisystem disorders, including risk for myeloid malignancies and immune deficiency. We identified a heterozygous de novo frameshift variant in SAMD9L in an infant with B cell aplasia and clinical autoinflammatory features who died from respiratory failure with chronic rhinovirus infection. Autopsy demonstrated absent bone marrow and peripheral B cells as well as selective loss of Langerhans and Purkinje cells.

View Article and Find Full Text PDF

Background: Respiratory sinus arrhythmia (RSA) has been understood as a physiological marker of emotional regulatory capacity. To date, little is known about the potential psychophysiological contributions to which influence the family functioning on young adult's internet addiction (IA) symptoms. The aim of this research was to examine the moderating role of resting RSA and its link between family functioning and IA symptoms.

View Article and Find Full Text PDF

Given that the airway epithelium is the initial site of infection, study of primary human airway epithelial cells (AEC) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) will be crucial to improved understanding of viral entry factors and innate immune responses to the virus. Centers for Disease Control and Prevention (CDC) guidance recommends work with live SARS-CoV-2 in cell culture be conducted in a Biosafety Level 3 (BSL-3) laboratory. To facilitate downstream assays of materials from experiments there is a need for validated protocols for SARS-CoV-2 inactivation to facilitate safe transfer of material out of a BSL-3 laboratory.

View Article and Find Full Text PDF

Airway inflammation is a critical feature of lower respiratory tract infections caused by viruses such as respiratory syncytial virus (RSV). A growing body of literature has demonstrated the importance of extracellular matrix changes such as the accumulation of hyaluronan (HA) and versican in the subepithelial space in promoting airway inflammation; however, whether these factors contribute to airway inflammation during RSV infection remains unknown. To test the hypothesis that RSV infection promotes inflammation via altered HA and versican production, we studied an ex vivo human bronchial epithelial cell (BEC)/human lung fibroblast (HLF) coculture model.

View Article and Find Full Text PDF

Background: The American Academy of Pediatrics (AAP) recommends that pediatric providers screen mothers for postpartum depression at the 1-, 2-, 4-, and 6-month well-child visits. However, compliance with this recommendation varies greatly and is far from 100%. This is significant, as perinatal mood and anxiety disorders (PMADs) represent the most common complication of childbearing.

View Article and Find Full Text PDF

Early life respiratory syncytial virus (RSV) infection has been linked to the onset of asthma. Despite this association, our knowledge of the progression of the initial viral infection is limited, and no safe or effective vaccine currently exists. Bronchioalveolar lavage, whole-lung cellular isolation, and gene expression analysis were performed on 3-wk- (juvenile) and 8-wk-old (adult) RSV-infected C57BL/6 mice to investigate age-related differences in immunologic responses; juvenile mice displayed a sustained myeloid infiltrate (including monocytes and neutrophils) with increased RNA expression of , , and , when compared with adult mice, at 72 h postinfection.

View Article and Find Full Text PDF

Background: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2).

View Article and Find Full Text PDF

The aim of this study is to examine the association of the combined indices of respiratory sinus arrhythmia at rest (basal RSA) and in response to a mental arithmetic task (RSA reactivity) to internet addiction. Participants included 99 young adults (61 men and 38 women) who reported on their levels of internet addiction. The results indicated that RSA reactivity moderated the association between basal RSA and self-reported internet addiction.

View Article and Find Full Text PDF

Human lung fibroblasts (HLFs) treated with the viral mimetic polyinosine-polycytidylic acid (poly I:C) form an extracellular matrix (ECM) enriched in hyaluronan (HA) that avidly binds monocytes and lymphocytes. Mast cells are important innate immune cells in both asthma and acute respiratory infections including respiratory syncytial virus (RSV); however, the effect of RSV on HA dependent mast cell adhesion and/or function is unknown. To determine if RSV infection of HLFs leads to the formation of a HA-enriched ECM that binds and enhances mast cell activity primary HLFs were infected with RSV for 48 h prior to leukocyte binding studies using a fluorescently labeled human mast cell line (LUVA).

View Article and Find Full Text PDF

Variants within genes encoding structural and regulatory elements of ligaments have been associated with musculoskeletal soft tissue injury risk. The role of intron 4-exon 5 variants within the α1 chain of type V collagen (COL5A1) gene and genes of the transforming growth factor-β (TGF-β) family, TGFBR3 and TGFBI, was investigated on the risk of anterior cruciate ligament (ACL) ruptures. A case-control genetic association study was performed on 210 control (CON) and 249 participants with surgically diagnosed ruptures (ACL), of which 147 reported a noncontact mechanism of injury (NON).

View Article and Find Full Text PDF

Airway remodeling may contribute to decreased lung function in asthmatic children. Bronchial epithelial cells (BECs) may regulate fibroblast expression of extracellular matrix (ECM) constituents and fibroblast-to-myofibroblast transition (FMT). Our objective was to determine if human lung fibroblast (HLF) expression of collagen I (COL1A1), hyaluronan synthase 2 (HAS2), and the FMT marker alpha-smooth muscle actin (α-SMA) by HLFs conditioned by BECs from asthmatic and healthy children correlate with lung function measures and exacerbation history among BEC donors.

View Article and Find Full Text PDF

Background: Airway inflammation is a hallmark of asthma. Alterations in extracellular matrix (ECM) hyaluronan (HA) content have been shown to modulate the recruitment and retention of inflammatory cells. Bronchial epithelial cells (BECs) regulate the activity of human lung fibroblasts (HLFs); however, their contribution in regulating HLF production of HA in asthma is unknown.

View Article and Find Full Text PDF

Background: An increasing number of studies using primary human bronchial epithelial cells (BECs) have reported intrinsic differences in the expression of several genes between cells from asthmatic and non-asthmatic donors. The stability of gene expression by primary BECs with increasing cell passage number has not been well characterized.

Methods: To determine if expression by primary BECs from asthmatic and non-asthmatic children of selected genes associated with airway remodeling, innate immune response, immunomodulatory factors, and markers of differentiated airway epithelium, are stable over increasing cell passage number, we studied gene expression patterns in passages 1, 2, 3, 4, and 5 BECs from asthmatic (n = 6) and healthy (n = 6) subjects that were differentiated at an air-liquid interface.

View Article and Find Full Text PDF

Bronchial epithelial cells (BECs) from healthy children inhibit human lung fibroblast (HLF) expression of collagen and fibroblast-to-myofibroblast transition (FMT), whereas asthmatic BECs do so less effectively, suggesting that diminished epithelial-derived regulatory factors contribute to airway remodeling. Preliminary data demonstrated that secretion of the activin A inhibitor follistatin-like 3 (FSTL3) by healthy BECs was greater than that by asthmatic BECs. We sought to determine the relative secretion of FSTL3 and activin A by asthmatic and healthy BECs, and whether FSTL3 inhibits FMT.

View Article and Find Full Text PDF

Background: Respiratory viral infection in early childhood, including that from respiratory syncytial virus (RSV), has been previously associated with the development of asthma.

Objective: We aimed to determine whether ex vivo RSV infection of bronchial epithelial cells (BECs) from children with asthma would induce specific gene expression patterns and whether such patterns were associated with lung function among BEC donors.

Methods: Primary BECs from carefully characterized children with asthma (n = 18) and matched healthy children without asthma (n = 8) were differentiated at an air-liquid interface for 21 days.

View Article and Find Full Text PDF