Loss of effective antibiotics through antimicrobial resistance (AMR) is one of the greatest threats to human health. By 2050, the annual death rate resulting from AMR infections is predicted to have climbed from 1.27 million per annum in 2019, up to 10 million per annum.
View Article and Find Full Text PDFManagement of agricultural pests requires an understanding of pest species diversity, their interactions with beneficial insects and spatial-temporal patterns of pest abundance. Invasive and agriculturally important insect pests can build up very high populations, especially in cropping landscapes. Traditionally, sampling effort for species identification involves small sample sizes and is labour intensive.
View Article and Find Full Text PDFThe spread of antimicrobial resistance (AMR) is a rapidly growing threat to humankind on both regional and global scales. As countries worldwide prepare to embrace a One Health approach to AMR management, which is one that recognizes the interconnectivity between human, animal, and environmental health, increasing attention is being paid to identifying and monitoring key contributing factors and critical control points. Presently, AMR sensing technologies have significantly progressed phenotypic antimicrobial susceptibility testing (AST) and genotypic antimicrobial resistance gene (ARG) detection in human healthcare.
View Article and Find Full Text PDFReleasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the "Debug" Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of carrying AlbB from with a local strain, we generated a AlbB2-F4 strain incompatible with both the wild-type (no ) and Mel- now extant in North Queensland.
View Article and Find Full Text PDFThe Bemisia cassava whitefly complex includes species that cause severe crop damage through vectoring cassava viruses in eastern Africa. Currently, this whitefly complex is divided into species and subgroups (SG) based on very limited molecular markers that do not allow clear definition of species and population structure. Based on 14,358 genome-wide SNPs from 62 Bemisia cassava whitefly individuals belonging to sub-Saharan African species (SSA1, SSA2 and SSA4), and using a well-curated mtCOI gene database, we show clear incongruities in previous taxonomic approaches underpinned by effects from pseudogenes.
View Article and Find Full Text PDFCassava ( Crantz), an important commercial and food security crop in East and Central Africa, continues to be adversely affected by the whitefly . In Uganda, changes in smallholder farming landscapes due to crop rotations can impact pest populations but how these changes affect pest outbreak risk is unknown. We investigated how seasonal changes in land-use have affected population dynamics and its parasitoids.
View Article and Find Full Text PDFSelf-medication with antibiotics is a major contributing factor to antimicrobial resistance. Prior research examining factors associated with antibiotic self-medication has focused on an individual's knowledge about antibiotics, antibiotic usage practices, accessibility to antibiotic medication, and demographic characteristics. The role of psychological distress associated with perceived health risks in explaining antibiotic self-medication is less understood.
View Article and Find Full Text PDFThe Bemisia tabaci species complex is one of the most important pests of open field and protected cropping globally. Within this complex, one species (Middle East Asia Minor 1, B. tabaci MEAM1, formerly biotype B) has been especially problematic, invading widely and spreading a large variety of plant pathogens, and developing broad spectrum pesticide resistance.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
Bemisia tabaci (Gennadius) represents a relatively large cryptic species complex. Australia has at least two native populations of B. tabaci sensu lato and these were first found on different host plants in different parts of Australia.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFThe 37 currently recognized Bemisia tabaci cryptic species are economically important species and contain both primary and secondary endosymbionts, but their diversity has never been mapped systematically across the group. To achieve this, PacBio sequencing of full-length bacterial 16S rRNA gene amplicons was carried out on 21 globally collected species in the B. tabaci complex, and two samples from B.
View Article and Find Full Text PDFCassava is a staple food for people across sub-Saharan Africa. Over the last 20 years, there has been an increased frequency of outbreaks and crop damage in this region caused by the cassava-adapted Bemisia tabaci putative species. Little is known about when and why B.
View Article and Find Full Text PDFBemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a pest species complex that causes widespread damage to cassava, a staple food crop for millions of households in East Africa. Species in the complex cause direct feeding damage to cassava and are the vectors of multiple plant viruses. Whilst significant work has gone into developing virus-resistant cassava cultivars, there has been little research effort aimed at understanding the ecology of these insect vectors.
View Article and Find Full Text PDFOnce considered a single species, the whitefly, Bemisia tabaci, is a complex of numerous morphologically indistinguishable species. Within the last three decades, two of its members (MED and MEAM1) have become some of the world's most damaging agricultural pests invading countries across Europe, Africa, Asia and the Americas and affecting a vast range of agriculturally important food and fiber crops through both feeding-related damage and the transmission of numerous plant viruses. For some time now, researchers have relied on a single mitochondrial gene and/or a handful of nuclear markers to study this species complex.
View Article and Find Full Text PDFMembers of the whitefly species complex cause millions of dollars of damage globally and are considered one of the world's most invasive species. They are capable of causing extensive damage to major vegetable, grain legume and fiber crops. All member of the species complex are morphologically identical therefore, data from the partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene sequence has been used to identify the various species.
View Article and Find Full Text PDFVector Borne Zoonotic Dis
January 2018
Versatile molecular tools for creating driving transgenes and other invasive genetic factors present regulatory, ethical, and environmental challenges that should be addressed to ensure their safe use. In this article, we discuss driving transgenes and invasive genetic factors that can potentially spread after their introduction into a small proportion of individuals in a population. The potential of invasive genetic factors to increase their number in natural populations presents challenges that require additional safety measures not provided by previous recommendations regarding accidental release of arthropods.
View Article and Find Full Text PDFMolecular species identification using suboptimal PCR primers can over-estimate species diversity due to coamplification of nuclear mitochondrial (NUMT) DNA/pseudogenes. For the agriculturally important whitefly Bemisia tabaci cryptic pest species complex, species identification depends primarily on characterization of the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene. The lack of robust PCR primers for the mtDNA COI gene can undermine correct species identification which in turn compromises management strategies.
View Article and Find Full Text PDFBackground: This study examines whether leaf spectra can be used to measure damage to cassava plants from whitefly (Bemisia tabaci), and the potential to translate measurements from leaf to landscape scale in eastern Africa. Symptoms of the cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) viruses, and sooty mould (SM) blackening of lower leaves from whiteflies feeding on the upper leaves, were measured at the leaf scale with a high-resolution spectroradiometer and a single photon avalanche diode (SPAD) meter, which retrieves relative chlorophyll concentration. Spectral measurements were compared to the five-level visual scores used to assess the severity of each of the three damaging agents in the field, and also to leaf chemistry data.
View Article and Find Full Text PDFBackground: The whitefly Bemisia tabaci complex harbours over 40 cryptic species that have been placed in 11 phylogenetically distinct clades based on the molecular characterization of partial mitochondrial DNA COI (mtCOI) gene region. Four cryptic species are currently within the invasive clade, i.e.
View Article and Find Full Text PDFTrialeurodes vaporariorum (Westwood, 1856) (Greenhouse whitefly) is an agricultural pest of global importance. It is associated with damage to plants during feeding and subsequent virus transmission. Yet, global phylogenetic relationships, population structure, and estimation of the rates of gene flow within this whitefly species remain largely unexplored.
View Article and Find Full Text PDFMuseum specimens represent valuable genomic resources for understanding host-endosymbiont/parasitoid evolutionary relationships, resolving species complexes and nomenclatural problems. However, museum collections suffer DNA degradation, making them challenging for molecular-based studies. Here, the mitogenomes of a single 1912 Sri Lankan Bemisia emiliae cotype puparium, and of a 1942 Japanese Bemisia puparium are characterised using a Next-Generation Sequencing approach.
View Article and Find Full Text PDFInvasive species present significant threats to global agriculture, although how the magnitude and distribution of the threats vary between countries and regions remains unclear. Here, we present an analysis of almost 1,300 known invasive insect pests and pathogens, calculating the total potential cost of these species invading each of 124 countries of the world, as well as determining which countries present the greatest threat to the rest of the world given their trading partners and incumbent pool of invasive species. We find that countries vary in terms of potential threat from invasive species and also their role as potential sources, with apparently similar countries sometimes varying markedly depending on specifics of agricultural commodities and trade patterns.
View Article and Find Full Text PDF