Although designed for in-office use, water vapor thermal therapy (Rezum™) remains a painful procedure, and oral±intravenous sedation is often required. Schelin Catheter® (ProstaLund AB, Lund, Sweden) is an innovative bladder catheter that delivers local anesthesia to the prostate in a sterile transurethral way. We aimed to evaluate the safety and feasibility of Rezum™ for male lower urinary tract symptoms due to benign prostatic obstruction (LUTS/BPO) with local anesthesia delivered with Schelin® catheter, and to report its first step-by-step video description.
View Article and Find Full Text PDFIntroduction: Early salvage radiotherapy is indicated for patients with biochemical recurrence after radical prostatectomy. However, for various reasons, certain patients do not benefit from this treatment (OBS) or only at a late stage (LSR). There are few studies on this subject and none on a "high-risk" population, such as patients of African descent.
View Article and Find Full Text PDFBackground: Christianson Syndrome, a recently identified X-linked neurodevelopmental disorder, is caused by mutations in the human gene SLC9A6 encoding the recycling endosomal alkali cation/proton exchanger NHE6. The patients have pronounced limitations in cognitive ability, motor skills and adaptive behaviour. However, the mechanistic basis for this disorder is poorly understood as few of the more than 20 mutations identified thus far have been studied in detail.
View Article and Find Full Text PDFBackground: An increasing number of asthma cases upon exposure to hamsters and anaphylactic reactions following hamster bites are being reported, but the allergens responsible are still poorly characterized. In the Golden hamster, male-specific submaxillary gland protein (MSP), a lipocalin expressed in a sex- and tissue-specific manner in the submaxillary and lacrimal glands, is secreted in the saliva, tears and urine. The purpose of this study was to determine if MSP is an allergen, to identify IgE-reactive proteins of different hamster species and to analyse potential cross-reactivities.
View Article and Find Full Text PDFMembrane trafficking in concert with the peripheral quality control machinery plays a critical role in preserving plasma membrane (PM) protein homeostasis. Unfortunately, the peripheral quality control may also dispose of partially or transiently unfolded polypeptides and thereby contribute to the loss-of-expression phenotype of conformational diseases. Defective functional PM expression of the human ether-a-go-go-related gene (hERG) K(+) channel leads to the prolongation of the ventricular action potential that causes long QT syndrome 2 (LQT2), with increased propensity for arrhythmia and sudden cardiac arrest.
View Article and Find Full Text PDFObjectives: The main aim of this study was to evaluate how well expectant mothers were informed on breastfeeding by healthcare professionals. The secondary objective was to determine the factors associated with the initiation of breastfeeding.
Population And Methods: The survey was conducted in a group of 500 women who had delivered at the Angers Hospital (France), based on a questionnaire filled out by the postpartum women during their hospital stay.
The wild-type CFTR channel undergoes constitutive internalization and recycling at the plasma membrane. This process is initiated by the recognition of the Tyr- and di-Leu-based endocytic motifs of CFTR by the AP-2 adaptor complex, leading to the formation of clathrin-coated vesicles and the channel delivery to sorting/recycling endosomes. Accumulating evidence suggests that conformationally defective mutant CFTRs (e.
View Article and Find Full Text PDFTherapeutic efforts to restore biosynthetic processing of the cystic fibrosis transmembrane conductance regulator lacking the F508 residue (DeltaF508CFTR) are hampered by ubiquitin-dependent lysosomal degradation of nonnative, rescued DeltaF508CFTR from the plasma membrane. Here, functional small interfering RNA screens revealed the contribution of chaperones, cochaperones, and ubiquitin-conjugating and -ligating enzymes to the elimination of unfolded CFTR from the cell surface, as part of a peripheral protein quality-control system. Ubiquitination of nonnative CFTR was required for efficient internalization and lysosomal degradation.
View Article and Find Full Text PDFOrganellar acidification by the electrogenic vacuolar proton-ATPase is coupled to anion uptake and cation efflux to preserve electroneutrality. The defective organellar pH regulation, caused by impaired counterion conductance of the mutant cystic fibrosis transmembrane conductance regulator (CFTR), remains highly controversial in epithelia and macrophages. Restricting the pH-sensitive probe to CFTR-containing vesicles, the counterion and proton permeability, and the luminal pH of endosomes were measured in various cells, including genetically matched CF and non-CF human respiratory epithelia, as well as cftr(+/+) and cftr(-/-) mouse alveolar macrophages.
View Article and Find Full Text PDFN-glycosylation, a common cotranslational modification, is thought to be critical for plasma membrane expression of glycoproteins by enhancing protein folding, trafficking, and stability through targeting them to the ER folding cycles via lectin-like chaperones. In this study, we show that N-glycans, specifically core glycans, enhance the productive folding and conformational stability of a polytopic membrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), independently of lectin-like chaperones. Defective N-glycosylation reduces cell surface expression by impairing both early secretory and endocytic traffic of CFTR.
View Article and Find Full Text PDFCurr Protoc Cell Biol
September 2008
The post-endocytic sorting of internalized membrane proteins plays a critical role in numerous physiological processes, including receptor desensitization, degradation of non-native plasma membrane proteins, and cell surface retrieval of receptors from early endosomes upon ligand dissociation. Here, we describe a fluorescence ratiometric image analysis (FRIA) method used to determine the post-endocytic fate and transport kinetics of transmembrane proteins based on the pH measurement of internalized cargo-containing compartments in living cells. The method relies on the notion that the pH of a cargo-containing transport vesicle (vesicular pH, pH(v)) could be taken as an indicator of its identity, considering that endocytic organelles (e.
View Article and Find Full Text PDFMegalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, most often caused by mutations in the MLC1 gene. MLC1 is an oligomeric plasma membrane (PM) protein of unknown function expressed mainly in glial cells and neurons. Most disease-causing missense mutations dramatically reduced the total and PM MLC1 expression levels in Xenopus oocytes and mammalian cells.
View Article and Find Full Text PDFThe ubiquitination of the receptor that mediates signaling induced by the polypeptide pituitary hormone prolactin (PRL) has been shown to lead to the degradation of this receptor and to the ensuing negative regulation of cellular responses to PRL. However, the mechanisms of PRL receptor (PRLr) proteolysis remain largely to be determined. Here we provide evidence that PRLr is internalized and primarily degraded via the lysosomal pathway.
View Article and Find Full Text PDFLigand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)-clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-alpha/beta receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains.
View Article and Find Full Text PDFLysosomal targeting is fundamental for the regulated disposal of ubiquitinated membrane proteins from the cell surface. To elucidate ubiquitin (Ub) configurations that are necessary and sufficient as multivesicular body (MVB)/lysosomal-sorting motifs, the intraendosomal destination and transport kinetics of model transmembrane cargo molecules bearing monoubiquitinated, multi-monoubiquitinated, or polyubiquitinated cytoplasmic tails were determined. Monomeric CD4 chimeras with K63-linked poly-Ub chains and tetrameric CD4-mono-Ub chimeras were rapidly targeted to the lysosome.
View Article and Find Full Text PDFWe have previously shown that K(+)-selective TASK2 channels and swelling-activated Cl(-) currents are involved in a regulatory volume decrease (RVD; Barriere H, Belfodil R, Rubera I, Tauc M, Lesage F, Poujeol C, Guy N, Barhanin J, Poujeol P. J Gen Physiol 122: 177-190, 2003; Belfodil R, Barriere H, Rubera I, Tauc M, Poujeol C, Bidet M, Poujeol P. Am J Physiol Renal Physiol 284: F812-F828, 2003).
View Article and Find Full Text PDFUbiquitination induced down-regulation of cell surface proteins by internalization and lysosomal targeting plays a fundamental role in cell physiology and pathogenesis of diseases. The molecular basis of a single ubiquitin (Ub) as an autonomous endocytic signal, the widely accepted mechanism, however, remains elusive in higher eukaryotes. Using Ub containing reporter proteins without signalling abilities, we present evidence that only multiple Ub moieties, linked either covalently or assembled as oligomers with an intact interface for recognition by Ub-interacting motifs (UIMs), are recognized by the endocytic machinery in vivo and associate with a subset of Ub-binding clathrin adaptors in vitro.
View Article and Find Full Text PDFThe acid- and volume-sensitive TASK2 K+ channel is strongly expressed in renal proximal tubules and papillary collecting ducts. This study was aimed at investigating the role of TASK2 in renal bicarbonate reabsorption by using the task2 -/- mouse as a model. After backcross to C57BL6, task2 -/- mice showed an increased perinatal mortality and, in adulthood, a reduced body weight and arterial blood pressure.
View Article and Find Full Text PDFVolume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 -/- mice. In wild-type PCT cells in primary culture, a Cl- conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials.
View Article and Find Full Text PDFSeveral papers reported the role of TASK2 channels in cell volume regulation and regulatory volume decrease (RVD). To check the possibility that the TASK2 channel modulates the RVD process in kidney, we performed primary cultures of proximal convoluted tubules (PCT) and distal convoluted tubules (DCT) from wild-type and TASK2 knockout (KO) mice. In KO mice, the TASK2 coding sequence was in part replaced by the lac-Z gene.
View Article and Find Full Text PDFThe role of CFTR in the control of K(+) currents was studied in mouse kidney. Whole cell clamp was used to identify K(+) currents on the basis of pharmacological sensitivities in primary cultures of proximal (PCT) and distal convoluted tubule (DCT) and cortical collecting tubule (CCT) from wild-type (WT) and CFTR knockout (KO) mice. In DCT and CCT cells, forskolin activated a 293B-sensitive K(+) current in WT, but not in KO, mice.
View Article and Find Full Text PDFThe role of cystic fibrosis transmembrane conductance regulator (CFTR) in the control of Cl(-) currents was studied in mouse kidney. Whole cell clamp was used to analyze Cl(-) currents in primary cultures of proximal and distal convoluted and cortical collecting tubules from wild-type (WT) and cftr knockout (KO) mice. In WT mice, forskolin activated a linear Cl(-) current only in distal convoluted and cortical collecting tubule cells.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
September 2001
To study the potential influence of cystic fibrosis conductance regulator (CFTR) on intracellular pH regulation during apoptosis induction, we used PS120 Chinese hamster lung fibroblasts devoid of the Na(+)/H(+) exchanger (NHE1 isoform) transfected with constructs, allowing the expression of CFTR and/or NHE1. Kinetics of lovastatin-induced apoptosis were measured by orcein staining, double staining with Hoechst-33258, propidium iodide, DNA fragmentation, and annexin V labeling. In PS120 control cells, the percentage of apoptotic cells after 40 h of lovastatin treatment was 23 +/- 3%, whereas in PS120 CFTR-transfected cells, this percentage was 40 +/- 4%.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2001
Cl(-) currents induced by cell swelling were characterized in an immortalized cell line (DC1) derived from rabbit distal bright convoluted tubule by the whole cell patch-clamp techniques and by (125)I(-) efflux experiments. Exposure of cells to a hypotonic shock induced outwardly rectifying Cl(-) currents that could be blocked by 0.1 mM 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, 1 mM DIDS, and by 1 mM diphenylamine-2-carboxylate.
View Article and Find Full Text PDF