J Proteome Res
January 2025
Breast cancer (BC) has become a global health problem, ranking first in incidence and fifth in mortality in women around the world. Although there are some diagnostic methods for the disease, these are not sufficiently effective and are invasive. In this work, we discriminated between patients without breast pathology (BP), with benign BP, and with BC based on the band patterns obtained from Western blot strip images of the autoantibody response to antigens of the T47D tumor line using and comparing supervised machine learning techniques to have a sensitive and accurate method.
View Article and Find Full Text PDFThe bias-variance dilemma is a well-known and important problem in Machine Learning. It basically relates the generalization capability (goodness of fit) of a learning method to its corresponding complexity. When we have enough data at hand, it is possible to use these data in such a way so as to minimize overfitting (the risk of selecting a complex model that generalizes poorly).
View Article and Find Full Text PDFBreast cancer is one of the leading causes of death among women worldwide. There are a number of techniques used for diagnosing this disease: mammography, ultrasound, and biopsy, among others. Each of these has well-known advantages and disadvantages.
View Article and Find Full Text PDFWe evaluate the effectiveness of seven Bayesian network classifiers as potential tools for the diagnosis of breast cancer using two real-world databases containing fine-needle aspiration of the breast lesion cases collected by a single observer and multiple observers, respectively. The results show a certain ingredient of subjectivity implicitly contained in these data: we get an average accuracy of 93.04% for the former and 83.
View Article and Find Full Text PDF