Background: The expression of biomass-degrading enzymes (such as cellobiohydrolases) in transgenic plants has the potential to reduce the costs of biomass saccharification by providing a source of enzymes to supplement commercial cellulase mixtures. Cellobiohydrolases are the main enzymes in commercial cellulase mixtures. In the present study, a cellobiohydrolase was expressed in transgenic corn stover leaf and assessed as an additive for two commercial cellulase mixtures for the saccharification of pretreated sugar cane bagasse obtained by different processes.
View Article and Find Full Text PDFRecent developments in chemical pretreatments of lignocellulosic biomass using polyols as co-solvents (e.g., glycerol and ethylene glycol) at temperatures less than 100°C may allow the effective use of thermostable and non-thermostable cellulases in situ during the saccharification process.
View Article and Find Full Text PDFBreeding energy cane for cellulosic biofuel production involves manipulating various traits. An important trait to optimize is cell wall degradability as defined by enzymatic hydrolysis. We investigated the feasibility of using near-infrared spectroscopy (NIRS) combined with multivariate calibration to predict energy cane cell wall digestibility based upon fiber samples from a range of sugarcane genotypes and related species.
View Article and Find Full Text PDFSugarcane (a Saccharum spp. interspecific hybrid) was previously engineered to synthesize sorbitol (designated as sorbitolcane). Motivated by the atypical development of the leaves in some sorbitolcane, the polar metabolite profiles in the leaves of those plants were compared against a group of control sugarcane plants.
View Article and Find Full Text PDFAn efficient in planta sugarcane-based production system may be realized by coupling the synthesis of alternative products to the metabolic intermediates of sucrose metabolism, thus taking advantage of the sucrose-producing capability of the plant. This was evaluated by synthesizing sorbitol in sugarcane (Saccharum hybrids) using the Malus domestica sorbitol-6-phosphate dehydrogenase gene (mds6pdh). Mature transgenic sugarcane plants were compared with untransformed sugarcane variety Q117 by evaluation of the growth, metabolite levels and extractable activity of relevant enzymes.
View Article and Find Full Text PDFSugarcane (Saccharum hybrids) was evaluated as a production platform for p-hydroxybenzoic acid using two different bacterial proteins (a chloroplast-targeted version of Escherichia coli chorismate pyruvate-lyase and 4-hydroxycinnamoyl-CoA hydratase/lyase from Pseudomonas fluorescens) that both provide a one-enzyme pathway from a naturally occurring plant intermediate. The substrates for these enzymes are chorismate (a shikimate pathway intermediate that is synthesized in plastids) and 4-hydroxycinnamoyl-CoA (a cytosolic phenylpropanoid intermediate). Although both proteins have previously been shown to elevate p-hydroxybenzoic acid levels in plants, they have never been evaluated concurrently in the same laboratory.
View Article and Find Full Text PDFHyaluronic acid (HA) is a commercially valuable medical biopolymer increasingly produced through microbial fermentation. Viscosity limits product yield and the focus of research and development has been on improving the key quality parameters, purity and molecular weight. Traditional strain and process optimisation has yielded significant improvements, but appears to have reached a limit.
View Article and Find Full Text PDFExopolysaccharides (EPS) play an important role in the rheology and texture of fermented food products. This is the first report demonstrating that homologous overexpression of a complete eps gene cluster in Lactococcus lactis leads to increased EPS production levels. A ninefold-elevated EPS plasmid copy number led to an almost threefold increase in the eps expression level, resulting in an almost fourfold increase in the NIZO B40 EPS production level.
View Article and Find Full Text PDFJ Biotechnol
January 2003
The valuable pharmaceutical polymer, hyaluronic acid, is produced industrially using the gram-positive bacterium Streptococcus zooepidemicus. Synthesis of this polymer is a significant energetic burden upon the microorganism hence the native NADH oxidase gene was cloned and overexpressed to increase the energy yield of catabolism during aerobic cultivation on glucose. Elevated NADH oxidase levels led to a decline in lactic acid generation and prevented ethanol formation, leaving acetate as the main fermentation product.
View Article and Find Full Text PDF