Mountain glaciers are at risk of rapid retreat and require an accurate prediction of their melt and evolution. However, there is a great deal of hassle with mountain glacier melt modelling at a regional scale. Most advanced physical process-based models require an ample amount of high-resolution measurements, while widely-used empirical models suffer from parameter transferability.
View Article and Find Full Text PDFDebate and deliberation surrounding climate change has shifted from mitigation toward adaptation, with much of the adaptation focus centered on adaptive practices, and infrastructure development. However, there is little research assessing expected impacts, potential benefits, and design challenges that exist for reducing vulnerability to expected climate impacts. The uncertainty of design requirements and associated government policies, and social structures that reflect observed and projected changes in the intensity, duration, and frequency of water-related climate events leaves communities vulnerable to the negative impacts of potential flood and drought.
View Article and Find Full Text PDFDroughts have been recorded all across Canada and have had significant impacts on individuals and communities. With climate change, projections suggest an increasing risk of drought in Canada, particularly in the south and interior. However, there has been little research on the impacts of drought on human health and the implications of a changing climate.
View Article and Find Full Text PDFThis article reviews the historical, instrumental, and future changes in climate for the northern latitudes of Canada. Discussion of historical climate over the last 10 000 years focuses on major climatic shifts including the Medieval Warm Period and the Little Ice Age, and how these changes compare with those most recently experienced during the period of instrumental records. In reference to the latter, details are noted about observed trends in temperature and precipitation that have been recorded over the last half century, which exhibit strong west to east and north to south spatial contrasts.
View Article and Find Full Text PDFUnderstanding the implications of climate change on northern Canada requires a background about the size and diversity of its human and biogeophysical systems. Occupying an area of almost 40% of Canada, with one-third of this contained in Arctic islands, Canada's northern territories consist of a diversity of physical environments unrivaled around the circumpolar north. Major ecozones composed of a range of landforms, climate, vegetation, and wildlife include: Arctic, boreal and taiga cordillera; boreal and taiga plains; taiga shield; and northern and southern Arctic.
View Article and Find Full Text PDF