Publications by authors named "Barrias C"

Hybrid 3D constructs combining different structural components afford unique opportunities to engineer functional tissues. Creating functional microvascular networks within these constructs is crucial for promoting integration with host vessels and ensuring successful engraftment. Here, we present a hybrid 3D system in which poly (ethylene oxide terephthalate)/poly (butylene terephthalate) fibrous scaffolds are combined with pectin hydrogels to provide internal topography and guide the formation of microvascular beds.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is crucial for tumor progression, being linked to alterations in the extracellular matrix (ECM). Understanding the ECM's role in EMT can uncover new therapeutic targets, yet replicating these interactions in vitro remains challenging. It is shown that hybrid hydrogels of alginate (ALG) and cell-derived decellularized ECM (dECM), with independently tunable composition and stiffness, are useful 3D-models to explore the impact of the breast tumor matrix on EMT.

View Article and Find Full Text PDF

The tumor microenvironment (TME) orchestrates cellular and extracellular matrix (ECM) interactions, playing a key role in tumorigenesis, tumor growth, and metastization. Investigating the interplay between stromal-epithelial cells within the TME is paramount for understanding cancer mechanisms but demands reliable biological models. 3D-models have emerged as powerful in vitro tools, but many fall short in replicating cell-cell/cell-matrix interactions.

View Article and Find Full Text PDF

The timely establishment of functional neo-vasculature is pivotal for successful tissue development and regeneration, remaining a central challenge in tissue engineering. In this study, we present a novel (micro)vascularization strategy that explores the use of specialized "vascular units" (VUs) as building blocks to initiate blood vessel formation and create perfusable, stroma-embedded 3D microvascular networks from the bottom-up. We demonstrate that VUs composed of endothelial progenitor cells and organ-specific fibroblasts exhibit high angiogenic potential when embedded in fibrin hydrogels.

View Article and Find Full Text PDF

In vivo, cells interact with the extracellular matrix (ECM), which provides a multitude of biophysical and biochemical signals that modulate cellular behavior. Inspired by this, we explored a new methodology to develop a more physiomimetic polysaccharide-based matrix for 3D cell culture. Maleimide-modified alginate (AlgM) derivatives were successfully synthesized using DMTMM to activate carboxylic groups.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation.

View Article and Find Full Text PDF

Acute myeloid leukaemia (AML) management remains a significant challenge in oncology due to its low survival rates and high post-treatment relapse rates, mainly attributed to treatment-resistant leukaemic stem cells (LSCs) residing in bone marrow (BM) niches. This review offers an in-depth analysis of AML progression, highlighting the pivotal role of extracellular vesicles (EVs) in the dynamic remodelling of BM niche intercellular communication. We explore recent advancements elucidating the mechanisms through which EVs facilitate complex crosstalk, effectively promoting AML hallmarks and drug resistance.

View Article and Find Full Text PDF

Developing biocompatible, non-fouling and biodegradable hydrogels for blood-contacting devices remains a demanding challenge. Such materials should promote natural healing, prevent clotting, and undergo controlled degradation. This study evaluates the biocompatibility and biodegradation of degradable poly(2-hydroxyethyl methacrylate) (d-pHEMA) hydrogels with or without reinforcement with oxidized few-layer graphene (d-pHEMA/M5ox) in a long term implantation in rats, assessing non-desired side-effects (irritation, chronic toxicity, immune response).

View Article and Find Full Text PDF

Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis.

View Article and Find Full Text PDF

Biofunctionalization of polysaccharides is a widely used strategy for obtaining extracellular matrix (ECM)-mimicking biomaterials. Still, commonly employed chemistries present low reaction yields and the selection of the most adequate bioconjugation route can be challenging. Herein, we compared the performance of carbodiimide and reductive amination chemistries for the synthesis of tailored peptide-alginate hybrid hydrogels as neural tissue mimics.

View Article and Find Full Text PDF

Alginate (ALG) is a widely used biomaterial to create artificial extracellular matrices (ECM) for tissue engineering. Since it does not degrade in the human body, imparting proteolytic sensitivity to ALG hydrogels leverages their properties as ECM-mimics. Herein, we explored the strain-promoted azide-alkyne cycloaddition (SPAAC) as a biocompatible and bio-orthogonal click-chemistry to graft cyclooctyne-modified alginate (ALG-K) with bi-azide-functionalized PVGLIG peptides.

View Article and Find Full Text PDF

The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier.

View Article and Find Full Text PDF

Degradable biomaterials for blood-contacting devices (BCDs) are associated with weak mechanical properties, high molecular weight of the degradation products and poor hemocompatibility. Herein, the inert and biocompatible FDA approved poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel was turned into a degradable material by incorporation of different amounts of a hydrolytically labile crosslinking agent, pentaerythritol tetrakis(3-mercaptopropionate). In situ addition of 1wt.

View Article and Find Full Text PDF

The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation.

View Article and Find Full Text PDF

The topography of the extracellular matrix (ECM) is a major biophysical regulator of cell behavior. While this has inspired the design of cell-instructive biomaterials, the ability to present topographic cues to cells in a true 3D setting remains challenging, particularly in ECM-like hydrogels made from a single polymer. Herein, we report the design of microstructured alginate hydrogels for injectable cell delivery and show their ability to orchestrate morphogenesis via cellular contact guidance in 3D.

View Article and Find Full Text PDF

Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear.

View Article and Find Full Text PDF

is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.

View Article and Find Full Text PDF

Blood-contacting devices are increasingly important for the management of cardiovascular diseases. Poly(ethylene glycol) (PEG) hydrogels represent one of the most explored hydrogels to date. However, they are mechanically weak, which prevents their use in load-bearing biomedical applications (e.

View Article and Find Full Text PDF

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues.

View Article and Find Full Text PDF

Modular tissue engineering approaches open up exciting perspectives for the biofabrication of vascularized tissues from the bottom-up, using micro-sized units such as spheroids as building blocks. While several techniques for 3D spheroid formation from multiple cell types have been reported, strategies to elicit the extra-spheroid assembly of complex vascularized tissues are still scarce. Here we describe an injectable approach to generate vascularized dermal tissue, as an example application, from spheroids combining fibroblasts and endothelial progenitors (OEC) in a xeno-free (XF) setting.

View Article and Find Full Text PDF

Healing of intestinal chronic wounds remains a major challenge as current therapies are ineffective in promoting proper regeneration of the damaged intestinal wall. An innovative concept, based on a bioinspired multifunctional alginate-melanin hybrid 3D scaffold, to target both inflammatory and regenerative processes, is proposed herein. Hydrogel-entrapped melanin nanoparticles demonstrated free-radical scavenging activity, supported by the neutralization of free-radicals in solution (90%), and the capture of reactive oxygen species (ROS) produced by stimulated macrophages in an inflammatory-mimicking environment.

View Article and Find Full Text PDF

Lung cancer is still the main cause of cancer-related deaths worldwide. Its treatment generally includes surgical resection, immunotherapy, radiotherapy, and chemo-targeted therapies such as the application of tyrosine kinase inhibitors. Gefitinib (GEF) is one of them, but its poor solubility in gastric fluids weakens its bioavailability and therapeutic activity.

View Article and Find Full Text PDF

The stromal microenvironment of breast tumors, namely the vasculature, has a key role in tumor development and metastatic spread. Tumor angiogenesis is a coordinated process, requiring the cooperation of cancer cells, stromal cells, such as fibroblasts and endothelial cells, secreted factors and the extracellular matrix (ECM). models capable of capturing such complex environment are still scarce, but are pivotal to improve success rates in drug development and screening.

View Article and Find Full Text PDF

Gastric cancer (GC) remains a major cause of death worldwide mainly because of the late detection in advanced stage. Recently, we proposed CD44v6 as a relevant marker for early detection of GC, opening new avenues for GC-targeted theranostics. Here, we designed a modular nanoscale system that selectively targets CD44v6-expressing GC cells by the site-oriented conjugation of a new-engineered CD44v6 half-antibody fragment to maleimide-modified polystyrene nanoparticles (PNPs) via an efficient bioorthogonal thiol-Michael addition click chemistry.

View Article and Find Full Text PDF

Spheroids can be used as building-blocks for bottom-up generation of artificial vascular beds, but current biofabrication strategies are often time-consuming and complex. Also, pre-optimization of single spheroid properties is often neglected. Here, we report a simple setup for rapid biomanufacturing of spheroid-based patch-like vascular beds.

View Article and Find Full Text PDF