Estuaries are vulnerable to oceanic and atmospheric climate change. Much of the research investigating climate change impacts on estuaries is focused on saltwater intrusion within surface water due to drought and rising sea levels, with implications for ecosystems and humans. Groundwater and soil near estuaries may also be influenced, as estuary salinity and hydraulic head changes can impact soils and aquifers not previously at risk of salinization.
View Article and Find Full Text PDFClimate change is driving higher coastal water levels, and models project accelerated future sea-level rise and coastal storm intensification. These dynamics paired with anthropogenic coastal alterations will drive drastic coastal change worldwide. Composite beaches with mixed sediment sizes warrant detailed study as these exhibit complex morphodynamics in response to changing hydrodynamics due to the distinct transport thresholds of different sediment types.
View Article and Find Full Text PDFHuman activities and climate change threaten coldwater organisms in freshwater ecosystems by causing rivers and streams to warm, increasing the intensity and frequency of warm temperature events, and reducing thermal heterogeneity. Cold-water refuges are discrete patches of relatively cool water that are used by coldwater organisms for thermal relief and short-term survival. Globally, cohesive management approaches are needed that consider interlinked physical, biological, and social factors of cold-water refuges.
View Article and Find Full Text PDFCoastal defense structures (e.g., dikes, seawalls) protect vulnerable communities along marine coastlines and estuaries from the physical and chemical influences of adjacent water bodies.
View Article and Find Full Text PDFPermafrost thaw due to climate change is altering terrestrial hydrological processes by increasing ground hydraulic conductivity and surface and subsurface hydrologic connectivity across the pan-Arctic. Understanding how runoff responds to changes in hydrologic processes and conditions induced by permafrost thaw is critical for water resources management in high-latitude and high-altitude regions. In this study, we analyzed streamflow recession characteristics for 1964-2016 for the Tahe watershed located at the southern margin of the permafrost region in Eurasia.
View Article and Find Full Text PDFDespite the global interest in green energy alternatives, little attention has focused on the large-scale viability of recycling the ground heat accumulated due to urbanization, industrialization and climate change. Here we show this theoretical heat potential at a multi-continental scale by first leveraging datasets of groundwater temperature and lithology to assess the distribution of subsurface thermal pollution. We then evaluate subsurface heat recycling for three scenarios: a status quo scenario representing present-day accumulated heat, a recycled scenario with ground temperatures returned to background values, and a climate change scenario representing projected warming impacts.
View Article and Find Full Text PDFFreshwater lenses underlying small ocean islands exhibit spatial variability and temporal fluctuations in volume, influencing ecologic management. For example, The Palmyra Atoll National Wildlife Refuge harbors one of the few surviving native stands of Pisonia grandis in the central Pacific Ocean, yet these trees face pressure from groundwater salinization, with little basic groundwater data to guide decision making. Adding to natural complexity, the geology of Palmyra was heavily altered by dredge and fill activities.
View Article and Find Full Text PDFStreams strongly influenced by groundwater discharge may serve as "climate refugia" for sensitive species in regions of increasingly marginal thermal conditions. The main goal of this study is to develop paired air and stream water annual temperature signal analysis techniques to elucidate the relative groundwater contribution to stream water and the effective groundwater flowpath depth. Groundwater discharge to streams attenuates surface water temperature signals, and this attenuation can be diagnostic of groundwater gaining systems.
View Article and Find Full Text PDFObtaining reliable estimates of vertical groundwater flows remains a challenge but is of critical importance to the management of groundwater resources. When large scale land clearing or groundwater extraction occurs, methods based on water table fluctuations or water chemistry are unreliable. As an alternative, a number of methods based on temperature-depth (T-z) profiles are available to provide vertical groundwater flow estimates from which recharge rates may be calculated.
View Article and Find Full Text PDF