The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.
View Article and Find Full Text PDFRecent developments in SbSe van der Waals material as an absorber candidate for thin film photovoltaic applications have demonstrated the importance of surface management for improving the conversion efficiency of this technology. SbSe thin films' versatility in delivering good efficiencies in both superstrate and substrate configurations, coupled with a compatibility with various low-temperature deposition techniques (below 500 °C and often below 350 °C), makes them highly attractive for advanced photovoltaic applications. This study presents a comparative analysis of the most effective chemical etchings developed for related thin film chalcogenide technologies to identify and understand the most appropriate surface chemical treatments for SbSe in substrate configuration, synthesized using a sequential process at very low temperatures (320 °C).
View Article and Find Full Text PDFUnderstanding structure and polymorphism is relevant for any organic device optimization, and it is of particular relevance in 7-decyl-2-phenyl[1]benzothieno[3,2-][1]benzothiophene (Ph-BTBT-10) since high carrier mobility in Ph-BTBT-10 thin films has been linked to the structural transformation from the metastable thin-film phase to the thermodynamically stable bilayer structure via thermal annealing. We combine here a systematic nanoscale morphological analysis with local Kelvin probe force microcopy (KPFM) that demonstrates the formation of a polar polymorph in thin films as an intermediate structure for thicknesses lower than 20 nm. The polar structure develops with thickness a variable amount of structural defects in the form of individual flipped molecules (point defects) or sizable polar domains, and evolves toward the reported nonpolar thin-film phase.
View Article and Find Full Text PDFCurrent improvement in perovskite solar cells (PSCs) has been achieved by interface engineering and fine-tuning of charge-selective contacts. In this work, we report three novel molecules that can form self-assembled layers (SAMs) as an alternative to the most commonly used p-type contact material, PTAA. Two of these molecules have bidentate anchoring groups (MC-54 and MC-55), while the last one is monodentate (MC-45).
View Article and Find Full Text PDFVan der Waals chalcogenides and chalcohalides have the potential to become the next thin film PV breakthrough, owing to the earth-abundancy and non-toxicity of their components, and their stability, high absorption coefficient and quasi-1D structure, which leads to enhanced electrical anisotropic properties when the material is oriented in a specific crystalline direction. However, quasi-1D semiconductors beyond Sb(S,Se), such as SbSeX chalcohalides, have been scarcely investigated for energy generation applications, and rarely synthesised by physical vapor deposition methodologies, despite holding the promise of widening the bandgap range (opening the door to tandem or semi-transparent devices), and showing enticing new properties such as ferroelectric behaviour and defect-tolerant nature. In this work, SbSeI and SbSeBr micro-columnar solar cells have been obtained for the first time by an innovative methodology based on the selective halogenation of SbSe thin films at pressure above 1 atm.
View Article and Find Full Text PDFContact resistance and charge trapping are two key obstacles, often intertwined, that negatively impact on the performance of organic field-effect transistors (OFETs) by reducing the overall device mobility and provoking a nonideal behavior. Here, we expose organic semiconductor (OSC) thin films based on blends of 2,7-dioctyl[1]benzothieno[3,2-][1]benzothiophene (C8-BTBT-C8) with polystyrene (PS) to (i) a CHCN vapor annealing process, (ii) a doping I/water procedure, and (iii) vapors of I/CHCN to simultaneously dope and anneal the films. After careful analysis of the OFET electrical characteristics and by performing local Kelvin probe force microscopy studies, we found that the vapor annealing process predominantly reduces interfacial shallow traps, while the chemical doping of the OSC film is responsible for the diminishment of deeper traps and promoting a significant reduction of the contact resistance.
View Article and Find Full Text PDFOur work examines the structural-electronic correlation of a new curcuminoid, AlkCCMoid, as a dielectric material on different substrates. For this purpose, we show a homemade sublimation method that allows the direct deposition of molecules on any type of matrix. The electronic properties of AlkCCMoid have been evaluated by measurements on single crystals, microcrystalline powder, and sublimated samples, respectively.
View Article and Find Full Text PDFThe identification of polymorphs in organic semiconductors allows for establishing structure-property relationships and gaining understanding of microscopic charge transport physics. Thin films of 2,7-bis(octyloxy)[1]benzothieno[3,2-]-benzothiophene (CO-BTBT-OC) exhibit a substrate-induced phase (SIP) that differs from the bulk structure, with important implications for the electrical performance in organic field effect transistors (OFETs). Here we combine grazing incidence wide-angle X-ray scattering (GIWAXS) and atomic force microscopy (AFM) to study how temperature affects the morphology and structure of CO-BTBT-OC films grown by physical vapor deposition on SiO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
We demonstrate the key role of charge-transfer complexes in surface doping as a successful methodology for improving channel field-effect mobility and reducing the threshold voltage in organic field-effect transistors (OFETs), as well as raising the film conductivity. Demonstrated here for 2,7-dioctyl[1]benzothieno[3,2-][1]benzothiophene (C-BTBT) doped with 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (FTCNNQ), channel doping by sequential deposition is consistently rationalized by the development of a cocrystalline structure that forms and evolves from the surface of the organic semiconductor film without trading the thin-film structure integrity. This scenario brings higher benefits for the device operation than doping by codeposition, where a decrease in the field-effect mobility of the device, even for a dopant content of only 1 mol %, makes codeposition less suitable.
View Article and Find Full Text PDFThe remarkable dual nature of faceted-charge patchy metal fluoride nanocrystals arises from the spontaneous selective coordination of anionic and cationic ligands on the different facets of the nanocrystals. In previous studies, the identification and origin of the charge at the patches were obtained by combining computer simulations with indirect experimental evidence. Taking a step further, we report herein the first direct real-space identification by Kelvin probe force microscopy of the predicted faceted-charge patchy behavior, allowing the image of the dual faceted-charge surfaces.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2022
By employing diverse surface sensitive synchrotron radiation spectroscopies we demonstrate that the fluorine content of initial CF deposited at room temperature on Ag(111) varies with molecular coverage. At the very early stages of deposition, CF fully de-fluorinates and transforms into C. Strong indications of silver fluoride formation are provided.
View Article and Find Full Text PDFThe dramatic consequences that the orientation adopted by the molecular dipoles, in diverse arrays of chloroaluminum phthalocyanine (ClAlPc) on Au(111), have on the ulterior adsorption and growth of C60 are explored by means of an all scanning probe microscopy approach. The unidirectional downwards organization of the molecular dipoles at the first layer reduces charge transfer from the metal to C60. Imbalance between attractive and repulsive interactions of the fullerenes are crucial for their ordered supramolecular aggregation.
View Article and Find Full Text PDFMeta-analysis, a systematic statistical examination that combines the results of several independent studies, has the potential of obtaining problem- and implementation-independent knowledge and understanding of metaheuristic algorithms, but has not yet been applied in the domain of operations research. To illustrate the procedure, we carried out a meta-analysis of the adaptive layer in adaptive large neighborhood search (ALNS). Although ALNS has been widely used to solve a broad range of problems, it has not yet been established whether or not adaptiveness actually contributes to the performance of an ALNS algorithm.
View Article and Find Full Text PDFTwo derivatives of [1]benzothieno[3,2-b][1]benzothiophene (BTBT), namely, 2,7-dioctyl-BTBT (C8-BTBT) and 2,7-diphenyl-BTBT (DPh-BTBT), belonging to one of the best performing organic semiconductor (OSC) families, have been employed to investigate the influence of the substitutional side groups on the properties of the interface created when they are in contact with dopant molecules. As a molecular p-dopant, the fluorinated fullerene CF is used because of its adequate electronic levels and its bulky molecular structure. Despite the dissimilarity introduced by the OSC film termination, dopant thin films grown on top adopt the same (111)-oriented FCC crystalline structure in the two cases.
View Article and Find Full Text PDFWe provide experimental and theoretical understanding on fundamental processes taking place at room temperature when a fluorinated fullerene dopant gets close to a metal surface. By employing scanning tunneling microscopy and photoelectron spectroscopies, we demonstrate that the on-surface integrity of CF depends on the interaction with the particular metal it approaches. Whereas on Au(111) the molecule preserves its chemical structure, on more reactive surfaces such as Cu(111) and Ni(111), molecules interacting with the bare metal surface lose the halogen atoms and transform to C.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2020
Purpose: The Covid-19 pandemic has disrupted health care systems all over the world. Elective surgical procedures have been postponed and/or cancelled. Consensus is, therefore, required related to the factors that need to be in place before elective surgery, including hip and knee replacement surgery, which is restarted.
View Article and Find Full Text PDFPurpose: The COVID-19 pandemic has disrupted the health care system around the entire globe. A consensus is needed about resuming total hip and knee procedures. The European Hip Society (EHS) and the European Knee Association (EKA) formed a panel of experts that have produced a consensus statement on how the safe re-introduction of elective hip and knee arthroplasty should be undertaken.
View Article and Find Full Text PDFReinstating elective hip and knee arthroplasty services presents significant challenges. We need to be honest about the scale of the obstacles ahead and realise that the health challenges and economic consequences of the COVID-19 pandemic are potentially devastating.We must also prepare to make difficult ethical decisions about restarting elective hip and knee arthroplasty.
View Article and Find Full Text PDFThe present work assesses improved carrier injection in organic field-effect transistors by contact doping and provides fundamental insight into the multiple impacts that the dopant/semiconductor interface details have on the long-term and thermal stability of devices. We investigate donor [1]benzothieno[3,2-]-[1]benzothiophene (BTBT) derivatives with one and two octyl side chains attached to the core, therefore constituting asymmetric (BTBT-C8) and symmetric (C8-BTBT-C8) molecules, respectively. Our results reveal that films formed out of the asymmetric BTBT-C8 expose the same alkyl-terminated surface as the C8-BTBT-C8 films do.
View Article and Find Full Text PDFEstablishing the rather complex correlation between the structure and the charge transfer in organic-organic heterostructures is of utmost importance for organic electronics and requires spatially resolved structural, chemical, and electronic details. Insight into this issue is provided here by combining atomic force microscopy, Kelvin probe force microscopy, photoemission electron microscopy, and low-energy electron microscopy for investigating a case study. We select the interface formed by pentacene (PEN), benchmark among the donor organic semiconductors, and a p-type dopant from the family of fluorinated fullerenes.
View Article and Find Full Text PDFA chiral Zn porphyrin derivative 1 and its achiral analogue 2 were studied in the solid state. Considering the rich molecular recognition of designed metalloporphyrins 1 and 2 and their tendency to crystallize, they were recrystallized from two solvent mixtures (CH Cl /CH OH and CH Cl /hexane). As a result, four different crystalline arrangements (1 a,b and 2 a,b, from 0D to 2D) were obtained.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2018
Disentangling the details of the vertical distribution of small semiconductor molecules blended with polystyrene (PS) and the contact properties are issues of fundamental value for designing strategies to optimize small-molecule:polymer blend organic transistors. These questions are addressed here for ultrathin blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and PS processed by a solution-shearing technique using three different blend composition ratios. We show that friction force microscopy (FFM) allows the determination of the lateral and vertical distribution of the two materials at the nanoscale.
View Article and Find Full Text PDFThe controlled 3D nanostructuration of molecular layers of the semiconducting molecules CH (pentacene) and N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) is addressed. A tip-assisted method using atomic force microscopy (AFM) is developed for removing part of the organic material and relocating it in up to six layer thick nanostructures. Moreover, unconventional molecular scale imaging combining diverse friction force microscopy modes reveals the stacking sequence of the piled layers.
View Article and Find Full Text PDFProgress in the general understanding of structure-property relationships in organic devices requires experimental tools capable of imaging structural details, such as molecular packing or domain attributes, on ultra-thin films. An operation mode of scanning force microscopy, related to friction force microscopy (FFM) and known as transverse shear microscopy (TSM), has demonstrated the ability to reveal the orientation of crystalline domains in organic surfaces with nanometer resolution. In spite of these promising results, numerous questions remain about the physical origin of the TSM domain imaging mechanism.
View Article and Find Full Text PDF