Publications by authors named "Barreda-Manso M"

Spinal cord injury (SCI) results in a cascade of primary and secondary damage, with apoptosis being a prominent cause of neuronal cell death. The X-linked inhibitor of apoptosis (XIAP) plays a critical role in inhibiting apoptosis, but its expression is reduced following SCI, contributing to increased neuronal vulnerability. This study investigates the regulatory role of miR-199a-5p on XIAP expression in the context of SCI.

View Article and Find Full Text PDF

Neuronal maturation is a process that plays a key role in the development and regeneration of the central nervous system. Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal neuronal maturation are less understood. Among the mechanisms influencing such neuronal maturation processes, apoptosis plays a key role.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are endogenous, short RNA oligonucleotides that regulate the expression of hundreds of proteins to control cells' function in physiological and pathological conditions. miRNA therapeutics are highly specific, reducing the toxicity associated with off-target effects, and require low doses to achieve therapeutic effects. Despite their potential, applying miRNA-based therapies is limited by difficulties in delivery due to their poor stability, fast clearance, poor efficiency, and off-target effects.

View Article and Find Full Text PDF

Mechanical trauma to the spinal cord causes extensive neuronal death, contributing to the loss of sensory-motor and autonomic functions below the injury location. Apoptosis affects neurons after spinal cord injury (SCI) and is associated with increased caspase activity. Cleavage of X-linked inhibitor of apoptosis protein (XIAP) after SCI may contribute to this rise in caspase activity.

View Article and Find Full Text PDF

The central nervous system microRNA miR-138-5p has attracted much attention in cancer research because it inhibits pro-apoptotic genes including CASP3. We hypothesize that miR-138-5p downregulation after SCI leads to overexpression of pro-apoptotic genes, sensitizing neural cells to noxious stimuli. This study aimed to identify miR-138-5p targets among pro-apoptotic genes overexpressed following SCI and to confirm that miR-138-5p modulates cell death in neural cells.

View Article and Find Full Text PDF

Nogo-A protein is a key myelin-associated inhibitor of axonal growth, regeneration, and plasticity in the central nervous system (CNS). Regulation of the Nogo-A/NgR1 pathway facilitates functional recovery and neural repair after spinal cord trauma and ischemic stroke. MicroRNAs are described as effective tools for the regulation of important processes in the CNS, such as neuronal differentiation, neuritogenesis, and plasticity.

View Article and Find Full Text PDF

COVID-19 pandemic is caused by betacoronavirus SARS-CoV-2. The genome of this virus is composed of a single strand of RNA with 5' and 3'-UTR flanking a region of protein-coding ORFs closely resembling cells' mRNAs. MicroRNAs are endogenous post-transcriptional regulators that target mRNA to modulate protein expression and mediate cellular functions, including antiviral defense.

View Article and Find Full Text PDF

Background: Because of their low levels of expression and the inadequacy of current research tools, CB cannabinoid receptors (CBR) have been difficult to study, particularly in the brain. This receptor is especially relevant in the context of neuroinflammation, so novel tools are needed to unveil its pathophysiological role(s).

Methods: We have generated a transgenic mouse model in which the expression of enhanced green fluorescent protein (EGFP) is under the control of the cnr2 gene promoter through the insertion of an Internal Ribosomal Entry Site followed by the EGFP coding region immediately 3' of the cnr2 gene and crossed these mice with mice expressing five familial Alzheimer's disease (AD) mutations (5xFAD).

View Article and Find Full Text PDF

Central nervous system (CNS) injuries, caused by cerebrovascular pathologies or mechanical contusions (e.g., traumatic brain injury, TBI) comprise a diverse group of disorders that share the activation of the integrated stress response (ISR).

View Article and Find Full Text PDF

Bile acids are steroid acids found in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is neuroprotective in different animal models of stroke and neurological diseases. We have previously shown that TUDCA has anti-inflammatory effects on glial cell cultures and in a mouse model of acute neuroinflammation.

View Article and Find Full Text PDF

Following a central nervous system (CNS) injury, restoration of the blood-brain barrier (BBB) integrity is essential for recovering homeostasis. When this process is delayed or impeded, blood substances and cells enter the CNS parenchyma, initiating an additional inflammatory process that extends the initial injury and causes so-called secondary neuronal loss. Astrocytes and profibrotic mesenchymal cells react to the injury and migrate to the lesion site, creating a new glia limitans that restores the BBB.

View Article and Find Full Text PDF

The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in various animal models of neuropathologies. We have previously shown the anti-inflammatory properties of TUDCA in an animal model of acute neuroinflammation. Here, we present a new anti-inflammatory mechanism of TUDCA through the regulation of transforming growth factor β (TGFβ) pathway.

View Article and Find Full Text PDF

We designed and synthesized two anomeric oleyl glucosaminides as anti-cancer agents where the presence of a trifluoroacetyl group close to the anomeric center makes them resistant to hydrolysis by hexosaminidases. The oleyl glycosides share key structural features with synthetic and natural oleyl derivatives that have been reported to exhibit anti-cancer properties. While both glycosides showed antiproliferative activity on cancer cell lines, only the α-anomer caused endoplasmic reticulum (ER) stress and cell death on C6 glioma cells.

View Article and Find Full Text PDF

After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α.

View Article and Find Full Text PDF

Background: Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown.

View Article and Find Full Text PDF

The synthesis and biological activity of oleylN-acetyl-α- and β-d-glucosaminides (1 and 2, respectively) and their thioglycosyl analogues (3 and 4, respectively) are reported. The compounds exhibited antimitotic activity on rat glioma (C6) and human lung carcinoma (A549) cell cultures in the micromolar range. Analysis of cell extracts using ultra performance liquid chromatography-mass spectrometry showed that the synthetic glycosides produce alterations in glycosphingolipid metabolism, with variable effect on the level of glucosylceramide depending on the configuration of the antimitotic used.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontdu2rnuo98n66uui8kphs9a29ofn8qrk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once