Publications by authors named "Baron Rubahamya"

Article Synopsis
  • * Current approved ADCs can be effective in mouse models when administered at tolerable weight-based doses, leading to consistent drug concentration and penetration in tumors.
  • * Incorporating computational methods to understand the distribution within tumors could enhance the development and evaluation of new ADCs, aiming for improved therapeutic efficacy.
View Article and Find Full Text PDF

Solid tumor antibody-drug conjugates (ADC) have experienced more clinical success in the last 5 years than the previous 18-year span since the first ADC approval in 2000. While recent advances in protein engineering, linker design, and payload variations have played a role in this success, high expression and readily internalized targets have also been crucial to solid tumor therapy. However, these factors are also paradoxically connected to poor tissue penetration and lower efficacy.

View Article and Find Full Text PDF

GlycoConnect technology can be readily adapted to provide different drug-to-antibody ratios (DARs) and is currently also evaluated in various clinical programs, including ADCT-601 (DAR2), MRG004a (DAR4), and XMT-1660 (DAR6). While antibody-drug conjugates (ADCs) typically feature a DAR2-8, it has become clear that ADCs with ultrapotent payloads (e.g.

View Article and Find Full Text PDF

Preclinical studies form the cornerstone of drug development and translation, bridging experiments with first-in-human trials. However, despite the utility of animal models, translation from the bench to bedside remains difficult, particularly for biologics and agents with unique mechanisms of action. The limitations of these animal models may advance agents that are ineffective in the clinic, or worse, screen out compounds that would be successful drugs.

View Article and Find Full Text PDF