Aims/hypothesis: tRNAs play a central role in protein synthesis. Besides this canonical function, they were recently found to generate non-coding RNA fragments (tRFs) regulating different cellular activities. The aim of this study was to assess the involvement of tRFs in the crosstalk between immune cells and beta cells and to investigate their contribution to the development of type 1 diabetes.
View Article and Find Full Text PDFObjective: DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic β-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration.
View Article and Find Full Text PDFPost-transcriptional repression of gene expression by miRNAs occurs through transcript destabilization or translation inhibition. mRNA decay is known to account for most miRNA-dependent repression. However, because transcript decay occurs co-translationally, whether target translation is a requirement for miRNA-dependent transcript destabilization remains unknown.
View Article and Find Full Text PDFCell cycle progression is controlled by the interplay of established cell cycle regulators. Changes in these regulators' activity underpin differences in cell cycle kinetics between cell types. We investigated whether long intergenic noncoding RNAs (lincRNAs) contribute to embryonic stem cell cycle adaptations.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) contribute to diverse cellular functions and the dysregulation of their expression or function can contribute to diseases, including diabetes. The contributions of lncRNAs to β-cell development, function and survival has been extensively studied in vitro. However, very little is currently known on the in vivo roles of lncRNAs in the regulation of glucose and insulin homeostasis.
View Article and Find Full Text PDFFriedreich ataxia is an autosomal recessive neurodegenerative disease associated with a high diabetes prevalence. No treatment is available to prevent or delay disease progression. Friedreich ataxia is caused by intronic GAA trinucleotide repeat expansions in the frataxin-encoding FXN gene that reduce frataxin expression, impair iron-sulfur cluster biogenesis, cause oxidative stress, and result in mitochondrial dysfunction and apoptosis.
View Article and Find Full Text PDFDeficient as well as excessive/prolonged endoplasmic reticulum (ER) stress signaling can lead to pancreatic β cell failure and the development of diabetes. Saturated free fatty acids (FFAs) such as palmitate induce lipotoxic ER stress in pancreatic β cells. One of the main ER stress response pathways is under the control of the protein kinase R-like endoplasmic reticulum kinase (PERK), leading to phosphorylation of the eukaryotic translation initiation factor 2 (eIF2α).
View Article and Find Full Text PDFDysregulated endoplasmic reticulum stress and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) are associated with pancreatic β-cell failure and diabetes. Here, we report the first homozygous mutation in the PPP1R15B gene (also known as constitutive repressor of eIF2α phosphorylation [CReP]) encoding the regulatory subunit of an eIF2α-specific phosphatase in two siblings affected by a novel syndrome of diabetes of youth with short stature, intellectual disability, and microcephaly. The R658C mutation in PPP1R15B affects a conserved amino acid within the domain important for protein phosphatase 1 (PP1) binding.
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is a neurodegenerative disorder associated with cardiomyopathy and diabetes. Effective therapies for FRDA are an urgent unmet need; there are currently no options to prevent or treat this orphan disease. FRDA is caused by reduced expression of the mitochondrial protein frataxin.
View Article and Find Full Text PDFWe describe a new syndrome of young onset diabetes, short stature and microcephaly with intellectual disability in a large consanguineous family with three affected children. Linkage analysis and whole exome sequencing were used to identify the causal nonsense mutation, which changed an arginine codon into a stop at position 127 of the tRNA methyltransferase homolog gene TRMT10A (also called RG9MTD2). TRMT10A mRNA and protein were absent in lymphoblasts from the affected siblings.
View Article and Find Full Text PDF