Introduction: Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome.
Methods: We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment.
Purpose: The study investigated effectiveness of a novel PEDF peptide mimetic to alleviate dry eye-like pathologies in a Type I diabetic mouse model established using streptozotocin.
Methods: Mice were treated topically for 3-6 weeks with Ppx (a 17-mer PEDF mimetic) 2x/day or vehicle. Corneal sensitivity, tear film, epithelial and endothelial injury were measured using Cochet-Bonnet esthesiometer, phenol red cotton thread wetting, fluorescein sodium staining, and ZO1 expression, respectively.
Background: Flow-diverting stents are not currently indicated for the treatment of bifurcation aneurysms, and some case series have demonstrated low occlusion rates, possibly due to a lack in neck coverage. The ReSolv stent is a unique hybrid metal/polymer stent that can be deployed with the shelf technique in order to improve neck coverage.
Methods: A Pipeline, unshelfed ReSolv, and shelfed ReSolv stent were deployed in the left-sided branch of an idealized bifurcation aneurysm model.
Caffeic acid phenylethyl ester (CAPE) is an antioxidative agent originally derived from propolis. Oxidative stress is a significant pathogenic factor in most retinal diseases. Our previous study revealed that CAPE suppresses mitochondrial ROS production in ARPE-19 cells by regulating UCP2.
View Article and Find Full Text PDFAsia Pac J Ophthalmol (Phila)
September 2022
There is growing evidence that retinal degenerative diseases are accompanied by epigenetic changes in both deoxyribonucleic acid methylation and histone modification. Even in the monogenic disease retinitis pigmentosa, there is a cascade of changes in gene expression that correlate with epigenetic changes, suggesting that many of the symptoms, and degenerative changes, may be a result of epigenetic changes downstream from the genetic mutation. This is supported by data from studies of diabetic retinopathy and macular degeneration, 2 diseases where it has been difficult to define a single causative change.
View Article and Find Full Text PDFAsia Pac J Ophthalmol (Phila)
September 2022
Retinal diseases are often accompanied by inflammation, vascular abnormalities, and neurodegeneration that decrease vision. Treatment with exogenous PEDF is widely shown to alleviate these conditions leading us to hypothesize that loss of function of the PEDF gene disrupts these pathways and leads to visual loss. Measurements were carried out by detailed phenotyping of PEDF null mice to assess expression of immunomodulators, glia activation, systemic inflammation, vascular disturbances, and visual sensitivity often associated with retinal pathologies.
View Article and Find Full Text PDFMost of the major retinal degenerative diseases are associated with significant levels of oxidative stress. One of the major sources contributing to the overall level of stress is the reactive oxygen species (ROS) generated by mitochondria. The driving force for ROS production is the proton gradient across the inner mitochondrial membrane.
View Article and Find Full Text PDFThe purpose of this study was to identify proteins that regulate vascular remodeling in an ROP mouse model. Pups were subjected to fluctuating oxygen levels and retinas sampled during vessel regression (PN12) or neovascularization (PN17) for comparative SWATH-MS proteomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We developed a human retinal endothelial cell (HREC) ROP correlate to validate the expression of retina neovascular-specific markers.
View Article and Find Full Text PDFPigment epithelium derived factor (PEDF), an endogenous inhibitor of angiogenesis, targets the growth of aberrant blood vessels in many tissues, including the eye. In this study we show that PEDF prevented early mitogenic signals of vascular endothelial growth factor (VEGF-A) in primate retinal endothelial cells, blocking proliferation, migration and tube formation. PEDF inhibited the phosphorylation and activation of five major downstream VEGF-A signaling partners, namely phosphoinositide-3-OH Kinase (PI3K), AKT, FAK, Src (Y416), and PLC-γ.
View Article and Find Full Text PDFOxidative stress due to mitochondrial produced reactive oxygen species is a major cause of damage seen in many retinal degenerative diseases. Caffeic acid phenylethyl ester (CAPE) is protective agent in multiple tissues and is reported to have anti-oxidant properties. Systemically applied CAPE protected retinal ganglion cells from ischemic injury induced by increased intraocular pressure.
View Article and Find Full Text PDFEpigenetic modifiers are increasingly being investigated as potential therapeutics to modify and overcome disease phenotypes. Diseases of the nervous system present a particular problem as neurons are postmitotic and demonstrate relatively stable gene expression patterns and chromatin organization. We have explored the ability of epigenetic modifiers to prevent degeneration of rod photoreceptors in a mouse model of retinitis pigmentosa (RP), using rd10 mice of both sexes.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
June 2021
Purpose: The cornea is richly innervated by the trigeminal ganglion (TG) and its function supported by secretions from the adjacent lacrimal (LG) and meibomian glands (MG). In this study we examined how pigment epithelium-derived factor (PEDF) gene deletion affects the cornea structure and function.
Methods: We used PEDF hemizygous and homozygous knockout mice to study effects of PEDF deficiency on corneal innervation assessed by beta tubulin staining, mRNA expression of trophic factors, and PEDF receptors by adjacent supporting glands, corneal sensitivity measured using a Cochet-Bonnet esthesiometer, and tear production using phenol red cotton thread wetting.
Prog Retin Eye Res
July 2021
Oxidative stress is a major component of most major retinal diseases. Many extrinsic anti-oxidative strategies have been insufficient at counteracting one of the predominant intrinsic sources of reactive oxygen species (ROS), mitochondria. The proton gradient across the inner mitochondrial membrane is a key driving force for mitochondrial ROS production, and this gradient can be modulated by members of the mitochondrial uncoupling protein (UCP) family.
View Article and Find Full Text PDFGlaucoma is a group of disorders associated with retinal ganglion cell (RGC) degeneration and death. There is a clear contribution of mitochondrial dysfunction and oxidative stress toward glaucomatous RGC death. Mitochondrial uncoupling protein 2 () is a well-known regulator of oxidative stress that increases cell survival in acute models of oxidative damage.
View Article and Find Full Text PDFGlaucoma is a neurodegenerative disorder characterized by mitochondrial dysfunction and an increase in oxidative damage, leading to retinal ganglion cell (RGC) death. The oxidative status of RGCs is regulated intrinsically and also extrinsically by retinal glia. The mitochondrial uncoupling protein 2 (UCP2) relieves oxidative and neuronal damage in a variety of neurodegenerative disease models.
View Article and Find Full Text PDFThe ability of pluripotent stem cells (PSCs) to differentiate into retinal tissue has led to many attempts to direct this process to yield specific retinal cell types. The ability to do so would greatly impact both the study of normal retina development in model systems that can be precisely controlled and the generation of a homogeneous population of cells optimized for transplantation in cell replacement therapy. Thus far, many reviews have focused on the translational potential of PSC retinal studies.
View Article and Find Full Text PDFThe transition of rod precursor cells to post-mitotic rod photoreceptors can be promoted by extrinsic factors such as insulin-like growth factor 1 (IGF-1), which regulates phosphatidylinositide concentration, and consequently the 3-phosphoinositide-dependent protein kinase-1 (PDPK-1). PDPK-1 is a 63 kDa cytoplasmic kinase that controls cell proliferation and differentiation. In the mouse retina, PDPK-1 and its phosphorylated derivative p-PDPK-1 (Ser241), showed peak expression during the first postnatal (PN) day with a substantial decline by PN7 and in the adult retina.
View Article and Find Full Text PDFPerineuronal nets (PNNs) are specialized condensations of extracellular matrix that ensheath particular neuronal subpopulations in the brain and spinal cord. PNNs regulate synaptic plasticity, including the encoding of fear memories by the amygdala. The present immunohistochemical investigation studied PNN structure and distribution, as well as the neurochemistry of their ensheathed neurons, in the rat amygdala using monoclonal antibody VC1.
View Article and Find Full Text PDFStem Cell Rev Rep
April 2018
Embryonic stem cell (ESC) differentiation can be used to model development and to produce transplantable cells of the desired phenotype. ESCs can reproducibly generate retinal cells but the derivation of photoreceptor precursors is variable and depends on an array of exogenous factors and intrinsic cell-cell interactions. In this work, we have defined the use of exogenous signaling factors, dissociation, and adherent versus 3-dimensional (3D) conditions on the derivation of retinal cells from pluripotent mouse ESCs.
View Article and Find Full Text PDFIn vitro differentiation of mouse embryonic stem cells (ESCs) into retinal fates can be used to study the roles of exogenous factors acting through multiple signaling pathways during retina development. Application of activin A during a specific time frame that corresponds to early embryonic retinogenesis caused increased generation of CRX photoreceptor precursors and decreased PAX6 retinal progenitor cells (RPCs). Following activin A treatment, SMAD2/3 was activated in RPCs and bound to promoter regions of key RPC and photoreceptor genes.
View Article and Find Full Text PDFTranscriptome complexity is substantially increased by the use of multiple transcription start sites for a given gene. By utilizing a rod photoreceptor-specific chromatin signature, and the RefSeq database of established transcription start sites, we have identified essentially all known rod photoreceptor genes as well as a group of novel genes that have a high probability of being expressed in rod photoreceptors. Approximately half of these novel rod genes are transcribed into multiple mRNA and/or protein isoforms through alternative transcriptional start sites (ATSS), only one of which has a rod-specific epigenetic signature and gives rise to a rod transcript.
View Article and Find Full Text PDFHistone acetylation has a regulatory role in gene expression and is necessary for proper tissue development. To investigate the specific roles of histone deacetylases (HDACs) in rod differentiation in neonatal mouse retinas, we used a pharmacological approach that showed that inhibition of class I but not class IIa HDACs caused the same phenotypic changes seen with broad spectrum HDAC inhibitors, most notably a block in the differentiation of rod photoreceptors. Inhibition of HDAC1 resulted in increase of acetylation of lysine 9 of histone 3 (H3K9) and lysine 12 of histone 4 (H4K12) but not lysine 27 of histone 3 (H3K27) and led to maintained expression of progenitor-specific genes such as and with concomitant block of expression of rod-specific genes.
View Article and Find Full Text PDFNeural Regen Res
August 2016
Reactive oxygen species (ROS) are free radicals thought to mediate the neurotoxic effects of several neurodegenerative disorders. In the central nervous system, ROS can also trigger a phenotypic switch in both astrocytes and microglia that further aggravates neurodegeneration, termed reactive gliosis. Negative regulators of ROS, such as mitochondrial uncoupling protein 2 (UCP2) are neuroprotective factors that decrease neuron loss in models of stroke, epilepsy, and parkinsonism.
View Article and Find Full Text PDF