Camelina is an oil seed crop that is enjoying increasing interest because it has a particularly valuable fatty acid profile, is modest regarding its water and nutrient requirements, and is comparatively resilient to abiotic and biotic stress factors. The regeneration of plants from cells accessible to genetic manipulation is an essential prerequisite for the generation of genetically engineered plants, be it by transgenesis or genome editing. Here, immature embryos were used on the assumption that their incomplete differentiation was associated with totipotency.
View Article and Find Full Text PDFCamelina sativa is an oil crop with low input costs and resistance to abiotic and biotic stresses. The presence of glucosinolates, plant metabolites with adverse health effects, restricts the use of camelina for human and animal nutrition. Cas9 endonuclease-based targeted mutagenesis of the three homeologs of each of the glucosinolate transporters CsGTR1 and CsGTR2 caused a strong decrease in glucosinolate amounts, highlighting the power of this approach for inactivating multiple genes in a hexaploid crop.
View Article and Find Full Text PDF