Philos Trans A Math Phys Eng Sci
December 2024
Room-temperature cavity quantum electrodynamics with molecular materials in optical cavities offers exciting prospects for controlling electronic, nuclear and photonic degrees of freedom for applications in physics, chemistry and materials science. However, achieving strong coupling with molecular ensembles typically requires high molecular densities and substantial electromagnetic-field confinement. These conditions usually involve a significant degree of molecular disorder and a highly structured photonic density of states.
View Article and Find Full Text PDFMolecular strong coupling offers exciting prospects in physics, chemistry, and materials science. While attention has been focused on developing realistic models for the molecular systems, the important role played by the entire photonic mode structure of the optical cavities has been less explored. We show that the effectiveness of molecular strong coupling may be critically dependent on cavity finesse.
View Article and Find Full Text PDFWe provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field.
View Article and Find Full Text PDFStrong coupling between light and molecules is a fascinating topic exploring the implications of the hybridization of photonic and molecular states. For example, many recent experiments have explored the possibility that strong coupling of photonic and vibrational modes might modify chemical reaction rates. In these experiments, reactants are introduced into a planar cavity, and the vibrational mode of a chemical bond strongly couples to one of the many photonic modes supported by the cavity.
View Article and Find Full Text PDFThe strong coupling of light and molecules offers a potential new pathway to modify the properties of photonic modes and molecules. There are many reasons to be optimistic about the prospects of strong coupling; however, progress in this field is currently hindered by challenges in reproducibility, problems associated with differentiating between strong coupling and other effects, and the lack of a clear theoretical model to describe the reported effects. Concerning the question of differentiating between strong coupling and other possible mechanisms when examining experimental data, here, we show how cognitive bias can lead us to place undue emphasis on a given interpretation of unsystematic experimental data.
View Article and Find Full Text PDFLipid metabolism is a complex and dynamic system involving numerous enzymes at the junction of multiple metabolic pathways. Disruption of these pathways leads to systematic dyslipidemia, a hallmark of many pathological developments, such as nonalcoholic steatohepatitis and diabetes. Recent advances in computational tools can provide insights into the dysregulation of lipid biosynthesis, but limitations remain due to the complexity of lipidomic data, limited knowledge of interactions among involved enzymes, and technical challenges in standardizing across different lipid types.
View Article and Find Full Text PDFStrong coupling of molecules to vacuum fields is widely reported to lead to modified chemical properties such as reaction rates. However, some recent attempts to reproduce infrared strong coupling results have not been successful, suggesting that factors other than strong coupling may sometimes be involved. In the first vacuum-modified chemistry experiment, changes to a molecular photoisomerization process in the ultraviolet-visible spectral range are attributed to strong coupling of the molecules to visible light.
View Article and Find Full Text PDFStrong coupling of molecular vibrations with light creates polariton states, enabling control over many optical and chemical properties. However, the near-field signatures of strong coupling are difficult to map as most cavities are closed systems. Surface-enhanced Raman microscopy of open metallic gratings under vibrational strong coupling enables the observation of spatial polariton localization in the grating near field, without the need for scanning probe microscopies.
View Article and Find Full Text PDFGenerating fully developed speckle in a repeatable way is of interest to ongoing scaled-laboratory experiments. Such experiments often look to validate theoretical and numerical predictions for numerous laser-based applications. Unfortunately, experimental constraints such as camera-pixel sampling, residual-sensor noise, and cover-glass etaloning limit one's ability to match the statistics of fully formed speckle in a straightforward way.
View Article and Find Full Text PDFCalcium is important for the growth and development of plants. It serves crucial functions in cell wall and cell membrane structure and serves as a secondary messenger in signaling pathways relevant to nutrient and immunity responses. Thus, measuring calcium levels in plants is important for studies of plant biology and for technology development in food, agriculture, energy, and forest industries.
View Article and Find Full Text PDFCigarette smoking (CS) is the leading cause of COPD, and identifying the pathways that are driving pathogenesis in the airway due to CS exposure can aid in the discovery of novel therapies for COPD. An additional barrier to the identification of key pathways that are involved in the CS-induced pathogenesis is the difficulty in building relevant and high throughput models that can recapitulate the phenotypic and transcriptomic changes associated with CS exposure. To identify these drivers, we have developed a cigarette smoke extract (CSE)-treated bronchosphere assay in 384-well plate format that exhibits CSE-induced decreases in size and increase in luminal secretion of MUC5AC.
View Article and Find Full Text PDFMillions who live in Latin America and sub-Saharan Africa are at risk of trypanosomatid infections, which cause Chagas disease and human African trypanosomiasis (HAT). Improved HAT treatments are available, but Chagas disease therapies rely on two nitroheterocycles, which suffer from lengthy drug regimens and safety concerns that cause frequent treatment discontinuation. We performed phenotypic screening against trypanosomes and identified a class of cyanotriazoles (CTs) with potent trypanocidal activity both in vitro and in mouse models of Chagas disease and HAT.
View Article and Find Full Text PDFCoral reefs thrive and provide maximal ecosystem services when they support a multi-level trophic structure and grow in favorable water quality conditions that include high light levels, rapid water flow, and low nutrient levels. Poor water quality and other anthropogenic stressors have caused coral mortality in recent decades, leading to trophic downgrading and the loss of biological complexity on many reefs. Solutions to reverse the causes of trophic downgrading remain elusive, in part because efforts to restore reefs are often attempted in the same diminished conditions that caused coral mortality in the first place.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2022
Strong light-matter coupling hybridizes light and matter to form states known as polaritons, which give rise to a characteristic anticrossing signature in dispersion plots. Here, we identify conditions under which an anticrossing can occur in the absence of strong coupling. We study planar silver/dielectric structures and find that, around the epsilon-near-zero point in silver, the impedance matching between the silver and dielectric layers gives rise to an anticrossing.
View Article and Find Full Text PDFThe strong coupling of molecules with surface plasmons results in hybrid states which are part molecule, part surface-bound light. Since molecular resonances may acquire the spatial coherence of plasmons, which have mm-scale propagation lengths, strong-coupling with molecular resonances potentially enables long-range molecular energy transfer. Gratings are often used to couple incident light to surface plasmons, by scattering the otherwise non-radiative surface plasmon inside the light-line.
View Article and Find Full Text PDFThe emergence of dielectric open optical cavities has opened a new research avenue in nanophotonics. In particular, dielectric microspheres support a rich set of cavity modes with varying spectral characteristics, making them an ideal platform to study molecule-cavity interactions. The symmetry of the structure plays a critical role in the outcoupling of these modes and, hence, the perceived molecule-cavity coupling strength.
View Article and Find Full Text PDFBackground: Transfusion of whole blood (WB) is a lifesaving treatment that prolongs life until definitive surgical intervention can be performed; however, collecting WB is a time-consuming and resource-intensive process. Furthermore, it may be difficult to collect sufficient WB at the point of injury to treat critically wounded patients or multiple hemorrhaging casualties. This study is a follow-up to the proof-of-concept study on the effect of airdrop on WB.
View Article and Find Full Text PDFXylans are a diverse family of hemicellulosic polysaccharides found in abundance within the cell walls of nearly all flowering plants. Unfortunately, naturally occurring xylans are highly heterogeneous, limiting studies of their synthesis and structure-function relationships. Here, we demonstrate that xylan synthase 1 from the charophyte alga is a powerful biocatalytic tool for the bottom-up synthesis of pure β-1,4 xylan polymers that self-assemble into microparticles in vitro.
View Article and Find Full Text PDFStrong light-matter coupling occurs when the rate of energy exchange between an electromagnetic mode and a molecular ensemble exceeds competing dissipative processes. The study of strong coupling has been motivated by applications such as lasing and the modification of chemical processes. Here we show that strong coupling can be used to create phase singularities.
View Article and Find Full Text PDFIn computational ghost imaging, the object is illuminated with a sequence of known patterns and the scattered light is collected using a detector that has no spatial resolution. Using those patterns and the total intensity measurement from the detector, one can reconstruct the desired image. Here we study how the reconstructed image is modified if the patterns used for the illumination are not the same as the reconstruction patterns and show that one can choose how to illuminate the object, such that the reconstruction process behaves like a spatial filtering operation on the image.
View Article and Find Full Text PDFPredictive coding is an important candidate theory of self-supervised learning in the brain. Its central idea is that sensory responses result from comparisons between bottom-up inputs and contextual predictions, a process in which rates and synchronization may play distinct roles. We recorded from awake macaque V1 and developed a technique to quantify stimulus predictability for natural images based on self-supervised, generative neural networks.
View Article and Find Full Text PDFCan we couple multiple molecular species to soft cavities? The answer to this question has relevance in designing open cavities for polaritonic chemistry applications. Because of the differences in adhesiveness, it is difficult to couple multiple molecular species to open cavities in a controlled and precise manner. In this Letter, we discuss the procedure to coat multiple dyes, TDBC and S2275, onto a dielectric microsphere using a layer-by-layer deposition technique so as to facilitate the multimolecule coupling.
View Article and Find Full Text PDFIn plants, cell adhesion relies on balancing the integrity of the pectin-rich middle lamella with wall loosening during tissue expansion. Mutation of (), a pectin methyltransferase, causes defective hypocotyl elongation and cell adhesion in hypocotyls However, the molecular function of QUA2 in cell adhesion is obscured by complex genetic and environmental interactions. To dissect the role of QUA2 in cell adhesion, we investigated a loss-of-function mutant and a suppressor mutant with restored cell adhesion, , using a combination of imaging and biochemical techniques.
View Article and Find Full Text PDF