Bladder cancer is one of the most common cancers with a high recurrence rate. Patients undergo mandatory yearly scrutinies, including cystoscopies, which makes bladder cancer highly distressing and costly. Here, we aim to develop a non-invasive, label-free method for the detection of bladder cancer cells in urine samples, which is based on interferometric imaging flow cytometry.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDSs) are a group of potentially deadly diseases that affect the morphology and function of neutrophils. Rapid diagnosis of MDS is crucial for the initiation of treatment that can vastly improve disease outcome. In this work, we present a new approach for detecting morphological differences between neutrophils isolated from blood samples of high-risk MDS patients and blood bank donors (BBDs).
View Article and Find Full Text PDFWe present a rapid label-free imaging flow cytometry and cell classification approach based directly on raw digital holograms. Off-axis holography enables real-time acquisition of cells during rapid flow. However, classification of the cells typically requires reconstruction of their quantitative phase profiles, which is time-consuming.
View Article and Find Full Text PDFIn intracytoplasmic sperm injection (ICSI), a single sperm cell is selected and injected into an egg. The quality of the chosen sperm and specifically its DNA fragmentation have a significant effect on the fertilization success rate. However, there is no method today to measure the DNA fragmentation of live and unstained cells during ICSI.
View Article and Find Full Text PDFThree-dimensional (3D) optical imaging of rapidly moving biological cells is difficult to achieve as such samples cannot be scanned over time. Here, we present a dynamic scan-free optical tomography approach for stain-free 3D imaging of biological cells using our new double six-pack tomography technique, whereby 12 off-axis holograms are captured in a single camera exposure without sacrificing resolution or field of view. The proposed system illuminates the sample from 12 angles simultaneously, and 3D refractive index (RI) tomograms are reconstructed from each recorded video frame of the dynamic sample.
View Article and Find Full Text PDFWe present a new method for the selection of individual sperm cells using a microfluidic device that automatically traps each cell in a separate microdroplet that then individually self-assembles with other microdroplets, permitting the controlled measurement of the cells using quantitative phase microscopy. Following cell trapping and droplet formation, we utilize quantitative phase microscopy integrated with bright-field imaging for individual sperm morphology and motility inspection. We then perform individual sperm selection using a single-cell micromanipulator, which is enhanced by the microdroplet-trapping procedure described above.
View Article and Find Full Text PDFWe present a multimodal imaging technique, combining tomographic phase microscopy with limited angular projection range and number, and two-channel spinning-disk confocal scanning fluorescence microscopy. This technique allows high-accuracy 3D refractive index (RI) profiling of live cells in spite of the missing projections. The cellular outer shape and its interior organelles measured by the confocal fluorescence imaging not only specify the cell in molecular levels, but also provide the 3D distributions of the whole cell as well as its organelles.
View Article and Find Full Text PDFWe present a method for real-time visualization and automatic processing for detection and classification of untreated cancer cells in blood during stain-free imaging flow cytometry using digital holographic microscopy and machine learning in throughput of 15 cells per second. As a preliminary model for circulating tumor cells in the blood, following an initial label-free rapid enrichment stage based on the cell size, we applied our holographic imaging approach, providing the quantitative optical thickness profiles of the cells during flow. We automatically classified primary and metastatic colon cancer cells, where the two types of cancer cells were isolated from the same individual, as well as four types of blood cells.
View Article and Find Full Text PDFWe present a method for label-free imaging and sorting of cancer cells in blood, which is based on a dielectrophoretic microfluidic chip and label-free interferometric phase microscopy. The chip used for imaging has been embedded with dielectrophoretic electrodes, and therefore it can be used to sort the cells based on the decisions obtained during the cell flow by the label-free quantitative imaging method. Hence, we obtained a real-time, automatic, label-free imaging flow cytometry with the ability to sort the cells during flow.
View Article and Find Full Text PDFWe present a multimodal technique for measuring the integral refractive index and the thickness of biological cells and their organelles by integrating interferometric phase microscopy (IPM) and rapid confocal fluorescence microscopy. First, the actual thickness maps of the cellular compartments are reconstructed using the confocal fluorescent sections, and then the optical path difference (OPD) map of the same cell is reconstructed using IPM. Based on the co-registered data, the integral refractive index maps of the cell and its organelles are calculated.
View Article and Find Full Text PDFWe present a new acquisition method that enables high-resolution, fine-detail full reconstruction of the three-dimensional movement and structure of individual human sperm cells swimming freely. We achieve both retrieval of the three-dimensional refractive-index profile of the sperm head, revealing its fine internal organelles and time-varying orientation, and the detailed four-dimensional localization of the thin, highly-dynamic flagellum of the sperm cell. Live human sperm cells were acquired during free swim using a high-speed off-axis holographic system that does not require any moving elements or cell staining.
View Article and Find Full Text PDFMany medical and biological protocols for analyzing individual biological cells involve morphological evaluation based on cell staining, designed to enhance imaging contrast and enable clinicians and biologists to differentiate between various cell organelles. However, cell staining is not always allowed in certain medical procedures. In other cases, staining may be time-consuming or expensive to implement.
View Article and Find Full Text PDFWe introduce a new shearing interferometry module for digital holographic microscopy, in which the off-axis angle, which defines the interference fringe frequency, is not coupled to the shearing distance, as is the case in most shearing interferometers. Thus, it enables the selection of shearing distance based on the spatial density of the sample, without losing spatial frequency content due to overlapping of the complex wave fronts in the spatial frequency domain. Our module is based on a 4f imaging unit and a diffraction grating, in which the hologram is generated from two mutually coherent, partially overlapping sample beams, with adjustable shearing distance, as defined by the position of the grating, but with a constant off-axis angle, as defined by the grating period.
View Article and Find Full Text PDFWe propose a new deep learning approach for medical imaging that copes with the problem of a small training set, the main bottleneck of deep learning, and apply it for classification of healthy and cancer cell lines acquired by quantitative phase imaging. The proposed method, called transferring of pre-trained generative adversarial network (TOP-GAN), is hybridization between transfer learning and generative adversarial networks (GANs). Healthy cells and cancer cells of different metastatic potential have been imaged by low-coherence off-axis holography.
View Article and Find Full Text PDFAcridine orange (AO) staining is used to diagnose DNA fragmentation status in sperm cells. Interferometric phase microscopy (IPM) is an optical imaging method based on digital holographic microscopy that provides quantitative morphological and refractive index imaging of cells in vitro without the need for staining. We have imaged sperm cells using stain-free IPM in order to estimate different cellular parameters, such as acrosome dry mass and size, in addition to an embryologist evaluation according to the World Health Organization (WHO)-2010 criteria.
View Article and Find Full Text PDFWe present a new technique for obtaining simultaneous multimodal quantitative phase and fluorescence microscopy of biological cells, providing both quantitative phase imaging and molecular specificity using a single camera. Our system is based on an interferometric multiplexing module, externally positioned at the exit of an optical microscope. In contrast to previous approaches, the presented technique allows conventional fluorescence imaging, rather than interferometric off-axis fluorescence imaging.
View Article and Find Full Text PDFWe present an external interferometric setup that is able to simultaneously acquire three wavelengths of the same sample instance without scanning or multiple exposures. This setup projects onto the monochrome digital camera three off-axis holograms with rotated fringe orientations, each from a different wavelength channel, without overlap in the spatial-frequency domain, and thus allows the full reconstruction of the three complex wavefronts from the three wavelength channels. We use this new setup for three-wavelength phase unwrapping, allowing phase imaging of thicker objects than possible with a single wavelength, but without the increased level of noise.
View Article and Find Full Text PDFWe suggest a new multimodal imaging technique for quantitatively measuring the integral (thickness-average) refractive index of the nuclei of live biological cells in suspension. For this aim, we combined quantitative phase microscopy with simultaneous 2-D fluorescence microscopy. We used 2-D fluorescence microscopy to localize the nucleus inside the quantitative phase map of the cell, as well as for measuring the nucleus radii.
View Article and Find Full Text PDFThe selection of sperm cells possessing normal morphology and motility is crucial for many assisted reproductive technologies (ART), especially for intracytoplasmic sperm injection (ICSI), as sperm quality directly affects the probability of inducing healthy pregnancy. We present a novel platform for real-time quantitative analysis and selection of individual sperm cells without staining. Towards this end, we developed an integrated approach, combining interferometric phase microscopy (IPM), for stain-free sperm imaging and real-time automatic analysis based on the sperm cell 3D morphology and contents, with a disposable microfluidic device, for sperm selection and enrichment.
View Article and Find Full Text PDFCurrently, the delicate process of selecting sperm cells to be used for in vitro fertilization (IVF) is still based on the subjective, qualitative analysis of experienced clinicians using non-quantitative optical microscopy techniques. In this work, a method was developed for the automated analysis of sperm cells based on the quantitative phase maps acquired through use of interferometric phase microscopy (IPM). Over 1,400 human sperm cells from 8 donors were imaged using IPM, and an algorithm was designed to digitally isolate sperm cell heads from the quantitative phase maps while taking into consideration both the cell 3D morphology and contents, as well as acquire features describing sperm head morphology.
View Article and Find Full Text PDFA major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label-free tomographic interferometry approach is presented.
View Article and Find Full Text PDFWe developed a new method to identify the separate cellular compartments in the optical path delay (OPD) maps of un-labeled spermatozoa. This was conducted by comparing OPD maps of fixed, un-labeled spermatozoa to bright field images of the same cells following labeling. The labeling enabled us to identify the acrosomal and nuclear compartments in the corresponding OPD maps of the cells.
View Article and Find Full Text PDFThe Great Rift Valley portion of the East African-Eurasian Migratory Flyway is extremely important globally because of the numbers (>500 million) and diversity of seasonal traveling birds. The construction of the Agmon wetland (1.1km(2)) in the Hula Valley, Israel in 1994 and a change in crop type and rotation has attracted increasing number of Eurasian cranes (Grus grus) to winter in the wetland (>40,000 in 2014).
View Article and Find Full Text PDFWe present a dual-modality technique based on wide-field photothermal (PT) interferometric phase imaging and simultaneous PT ablation to selectively deplete specific cell populations labelled by plasmonic nanoparticles. This combined technique utilizes the plasmonic reaction of gold nanoparticles under optical excitation to produce PT imaging contrast by inducing local phase changes when the excitation power is weak, or ablation of selected cells when increasing the excitation power. Controlling the entire process is carried out by dynamic quantitative phase imaging of all cells (labelled and unlabelled).
View Article and Find Full Text PDFBackground: Arming antibody with toxins is a new approach in cancer therapy. We evaluated the efficacy of cetuximab-ZZ-PE38 immunocomplex in killing cancer cells in vitro and inhibiting tumor growth in nude mice.
Methods: Several cancer cell lines and human foreskin fibroblasts were tested for epidermal growth factor receptor (EGFR) expression and cetuximab binding using Western blot assay, enzyme-linked immunosorbent assay (ELISA), and flow cytometry.