Publications by authors named "Barnard F"

Although successful and persistent colonization of the gastric mucosa depends on the ability to respond to changing environmental conditions and co-ordinate the expression of virulence factors during the course of infection, Helicobacter pylori possesses relatively few transcriptional regulators. We therefore investigated the contribution of the regulatory protein CsrA to global gene regulation in this important human pathogen. CsrA was necessary for full motility and survival of H.

View Article and Find Full Text PDF

Homologous recombination contributes to the extraordinary genetic diversity of Helicobacter pylori and may be critical for surface antigen expression and adaptation to environmental challenges within the stomach. We generated isogenic, nonpolar H. pylori ruvC mutants to investigate the function of RuvC, a Holliday junction endonuclease that resolves recombinant joints into nicked duplex products.

View Article and Find Full Text PDF

We have investigated the interaction of quinolones with DNA by a number of methods to establish whether a particular binding mode correlates with quinolone potency. The specificities of the quinolone-mediated DNA cleavage reaction of DNA gyrase were compared for a number of quinolones. Two patterns that depended on the potency of the quinolone were identified.

View Article and Find Full Text PDF

DNA gyrase is a target of quinolone antibacterial agents, but the molecular details of the quinolone-gyrase interaction are not clear. Quinolone resistance mutations frequently occur at residues Ser(83) and Asp(87) of the gyrase A subunit, suggesting that these residues are involved in drug binding. Single and double alanine substitutions were created at these positions (Ala(83), Ala(87), and Ala(83) Ala(87)), and the mutant proteins were assessed for DNA supercoiling, DNA cleavage, and resistance to a number of quinolone drugs.

View Article and Find Full Text PDF

DNA gyrase supercoils DNA in bacteria. The fact that it is essential in all bacteria and absent from eukaryotes makes it an ideal drug target. We discuss the action of coumarin and quinolone drugs on gyrase.

View Article and Find Full Text PDF

The galactoside-binding sites of ricin B chain can be blocked by affinity-directed chemical modification using a reactive ligand derived from asialoglycopeptides containing triantennary N-linked oligosaccharides. The terminal galactosyl residue of one branch of the triantennary oligosaccharide is modified to contain a reactive dichlorotriazine moiety. Two separate galactoside-binding sites have been clearly established in the ricin B chain by X-ray crystallography [Rutenber, E.

View Article and Find Full Text PDF

The nuclear envelope (NE) separates the two major compartments of eukaryotic cells, the nucleus and the cytoplasm. Recent studies suggest that the uptake of nuclear proteins into the nucleus is initiated by binding of nuclear location signals (NLSs) contained within these proteins to receptors in the NE, followed by translocation through the nuclear pore complex. To examine the binding step without interference from intranuclear events, we have used a system consisting of (i) purified rat liver NEs fixed onto glass slides and (ii) the prototype simian virus 40 large T antigen (SV40 T) NLS conjugated to nonnuclear carrier proteins, and we have visualized the receptor-ligand interaction by indirect immunofluorescence.

View Article and Find Full Text PDF