Publications by authors named "Barnak D"

Sophisticated tools such as computer vision techniques in combination with 1D lineout type analyses have been used in automating the analysis of spectral data for high energy density (HED) plasmas. Standardized automation can solve the problems posed by the complexity of HED spectra and the quantity of data. We present a spectroscopic code written for automated and streamlined analysis of spatially resolved x-ray absorption data from the COAX platform on Omega-60.

View Article and Find Full Text PDF

Cubic spline interpolation is able to recover temporally and spectrally resolved soft x-ray fluxes from an array of K-edge filtered x-ray diodes without the need for a priori assumptions about the spectrum or the geometry of the emitting volume. The mathematics of the cubic spline interpolation is discussed in detail. The analytic nature of the cubic spline solution allows for analytical error propagation, and the method of calculating the error for radiation temperature, spectral power, and confidence intervals of the unfolded spectrally resolved flux is explained.

View Article and Find Full Text PDF

A pulsed high magnetic field device based on the inductively coupled coil concept [D. H. Barnak , Rev.

View Article and Find Full Text PDF

Magnetized high energy density physics (HEDP) is a very active and relatively unexplored field that has applications in inertial confinement fusion, astrophysical plasma science, and basic plasma physics. A self-contained device, the Magneto-Inertial Fusion Electrical Discharge System, MIFEDS [G. Fiksel et al.

View Article and Find Full Text PDF

We present the first laboratory generation of high-Mach-number magnetized collisionless shocks created through the interaction of an expanding laser-driven plasma with a magnetized ambient plasma. Time-resolved, two-dimensional imaging of plasma density and magnetic fields shows the formation and evolution of a supercritical shock propagating at magnetosonic Mach number M_{ms}≈12. Particle-in-cell simulations constrained by experimental data further detail the shock formation and separate dynamics of the multi-ion-species ambient plasma.

View Article and Find Full Text PDF

An upgrade of the pulsed magnetic field generator magneto-inertial fusion electrical discharge system [O. Gotchev et al., Rev.

View Article and Find Full Text PDF

Observations of magnetic reconnection between colliding plumes of magnetized laser-produced plasma are presented. Two counterpropagating plasma flows are created by irradiating oppositely placed plastic (CH) targets with 1.8-kJ, 2-ns laser beams on the Omega EP Laser System.

View Article and Find Full Text PDF

This work focuses on the production of both stationary and traveling intrinsic localized modes (ILMs), also known as discrete breathers, in two closely related electrical lattices; we demonstrate experimentally that the interplay between these two ILM types can be utilized for the purpose of spatial control. We describe a novel mechanism that is responsible for the motion of driven ILMs in this system, and quantify this effect by modeling in some detail the electrical components comprising the lattice.

View Article and Find Full Text PDF