Background: Frontonasal dysplasia type-2(FND2), a rare phenotypically variable and heterogeneous developmental anomaly resulting from mutation of the ALX4 gene, is primarily characterized by malformation of the skull and facial skeleton. This study was designed to showcase a clinical, imaging, and genetic analysis of FND2 in a consanguineous family of Bangladeshi origin.
Methodology: Clinical imaging and whole genome sequencing of mother, father and patient was done by using Nextera DNA flex library preparation kit (Illumina, USA) using Novaseq 6000 next generation sequencer to find out ALX4 mutation which causes FND2 in patient.
The goal of this study was to evaluate the antibacterial and cytotoxic effects of both the and plant part extracts of the medicinal plant . An effective protocol for regeneration and callus formation was developed using nodal segments and regenerated leaf explants, respectively. The highest fresh and dry weight calli were produced after four weeks of culture on Murashige and Skoog (MS) medium containing 2.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is readily transmitted from person to person. We evaluated the emerging landscape of SARS-CoV-2 variants in Bangladesh from a retrospective study of nasopharyngeal swabs collected from 130 SARS-CoV-2-positive cases randomly selected over 6 months. Mutation analysis of whole-genome sequencing of 130 SARS-CoV-2 variants revealed 528 unique coding mutations, of which 102 were deletions, 6 were premature stop codons, and the remaining were substitutions.
View Article and Find Full Text PDFBackground: Streptococcus pneumoniae is a major pathogen that poses a significant hazard to global health, causing a variety of infections including pneumonia, meningitis, and sepsis. The emergence of antibiotic-resistant strains has increased the difficulty of conventional antibiotic treatment, highlighting the need for alternative therapies such as multi-epitope vaccines. In this study, immunoinformatics algorithms were used to identify potential vaccine candidates based on the extracellular immunogenic protein Pneumococcal surface protein C (PspC).
View Article and Find Full Text PDFIn the present study, we report the complete genome of five Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from Bangladesh harboring mutations at Spike protein (E484K, Q677H, D614G, A67V, Q52R, Y144del, H69del, V70del, F888L) assigned to the B.1.525 lineage (Variant of interest).
View Article and Find Full Text PDFQuantitative reverse transcriptase polymerase chain reaction (qRT-PCR) is the gold standard method for SARS-CoV-2 detection, and several qRT-PCR kits have been established targeting different genes of the virus. Due to the high mutation rate of these genes, false negative results arise thus complicating the interpretation of the diagnosis and increasing the need of alternative targets. In this study, an alternative approach for the detection of SARS-CoV-2 viral RNA targeting the membrane (M) gene of the virus using qRT-PCR was described.
View Article and Find Full Text PDFSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID -19, is constantly evolving, requiring continuous genomic surveillance. In this study, we used whole-genome sequencing to investigate the genetic epidemiology of SARS-CoV-2 in Bangladesh, with particular emphasis on identifying dominant variants and associated mutations. We used high-throughput next-generation sequencing (NGS) to obtain DNA sequences from COVID-19 patient samples and compared these sequences to the Wuhan SARS-CoV-2 reference genome using the Global Initiative for Sharing All Influenza Data (GISAID).
View Article and Find Full Text PDFBackground: The next-generation sequencing (NGS) technology facilitates in-depth study of host-pathogen metatranscriptome. We, therefore, implicated phylodynamic and transcriptomic approaches through NGS technology to know/understand the dengue virus (DENV) origin and host response with dengue fever.
Methods: In this study, blood serum RNA was extracted from 21 dengue patients and 3 healthy individuals.
The COVID-19 pandemic, caused by SARS-CoV-2, has globally affected both human health and economy. Several variants with a high potential for reinfection and the ability to evade immunity were detected shortly after the initial reported case of COVID-19. A total of 30 mutations in the spike protein (S) have been reported in the SARS-CoV-2 (BA.
View Article and Find Full Text PDFThe impact of SARS-CoV-2 infection on the nasopharyngeal microbiome has not been well characterised. We sequenced genetic material extracted from nasopharyngeal swabs of SARS-CoV-2-positive individuals who were asymptomatic (n = 14), had mild (n = 64) or severe symptoms (n = 11), as well as from SARS-CoV-2-negative individuals who had never-been infected (n = 5) or had recovered from infection (n = 7). Using robust filters, we identified 1345 taxa with approximately 0.
View Article and Find Full Text PDFWe previously reported that SARS-CoV-2 infection reduces human nasopharyngeal commensal microbiomes (bacteria, archaea and commensal respiratory viruses) with inclusion of pathobionts. This study aimed to assess the possible changes in the abundance and diversity of resident mycobiome in the nasopharyngeal tract (NT) of humans due to SARS-CoV-2 infections. Twenty-two (n = 22) nasopharyngeal swab samples (including COVID-19 = 8, Recovered = 7, and Healthy = 7) were collected for RNA-sequencing followed by taxonomic profiling of mycobiome.
View Article and Find Full Text PDFBackground: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic which has brought a great challenge to public health. After the first emergence of novel coronavirus SARS-CoV-2 in the city of Wuhan, China, in December 2019. As of March 2020, SARS-CoV-2 was first reported in Bangladesh and since then the country has experienced a steady rise in infections, resulting in 13,355,191 cases and 29,024 deaths as of 27 February 2022.
View Article and Find Full Text PDFThe COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has created an urgent global situation. Therefore, it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to understand disease pathogenesis and the genetic factor(s) responsible for inter-individual variability and disease comorbidities. The pandemic continues to spread worldwide, despite intense efforts to develop multiple vaccines and therapeutic options against COVID-19.
View Article and Find Full Text PDFJ Med Virol
April 2022
Bangladesh is experiencing a second wave of COVID-19 since March 2021, despite the nationwide vaccination drive with ChAdOx1 (Oxford-AstraZeneca) vaccine from early February 2021. Here, we characterized 19 nasopharyngeal swab (NPS) samples from COVID-19 suspect patients using genomic and metagenomic approaches. Screening for SARS-CoV-2 by reverse transcriptase polymerase chain reaction and metagenomic sequencing revealed 17 samples of COVID-19 positive (vaccinated = 10, nonvaccinated = 7) and 2 samples of COVID-19 negative.
View Article and Find Full Text PDFThe microbiota of the nasopharyngeal tract (NT) play a role in host immunity against respiratory infectious diseases. However, scant information is available on interactions of SARS-CoV-2 with the nasopharyngeal microbiome. This study characterizes the effects of SARS-CoV-2 infection on human nasopharyngeal microbiomes and their relevant metabolic functions.
View Article and Find Full Text PDFWe report the near-complete genome sequence and phylogenetic analysis of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.
View Article and Find Full Text PDFThis study reports the coding-complete genome sequence, with variant identifications and phylogenetic analysis, of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) P.1 variant (20J/501Y.V3), obtained from an oropharyngeal swab specimen from a female Bangladeshi patient diagnosed with coronavirus disease 2019 (COVID-19) with no travel history.
View Article and Find Full Text PDFObjective: The major objective of the study was to sequence the whole genome of four Bangladeshi individuals and identify variants that are known to be associated with functional changes or disease states. We also carried out an ontology analysis to identify the functions and pathways most likely to be affected by these variants.
Results: We identified around 900,000 common variants and close to 5 million unique ones in all four of the individuals.
Microbiol Resour Announc
September 2020
We report the sequencing of three severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Bangladesh. We have identified a unique mutation (NSP2_V480I) in one of the sequenced genomes (isolate hCoV-19/Bangladesh/BCSIR-NILMRC-006/2020) compared to the sequences available in the Global Initiative on Sharing All Influenza Data (GISAID) database. The data from this analysis will contribute to advancing our understanding of the epidemiology of SARS-CoV-2 in Bangladesh as well as worldwide at the molecular level and will identify potential new targets for interventions.
View Article and Find Full Text PDF