Publications by authors named "Barmak Modrek"

Asthma is canonically thought of as a disorder of excessive Th2-driven inflammation in the airway, although recent studies have described heterogeneity with respect to asthma pathophysiology. We have previously described distinct phenotypes of asthma based on the presence or absence of a three-gene "Th2 signature" in bronchial epithelium, which differ in terms of eosinophilic inflammation, mucin composition, subepithelial fibrosis, and corticosteroid responsiveness. In the present analysis, we sought to describe Th2 inflammation in human asthmatic airways quantitatively with respect to known mediators of inflammation and intercellular communication.

View Article and Find Full Text PDF

Although activating mutations and gains in copy number are key mechanisms for oncogene activation, the relationship between the two is not well understood. In this study, we focused on KRAS copy gains and mutations in non-small cell lung cancer. We found that KRAS copy gains occur more frequently in tumors with KRAS activating mutations and are associated with large increases in KRAS expression.

View Article and Find Full Text PDF

Rationale: T-helper type 2 (Th2) inflammation, mediated by IL-4, IL-5, and IL-13, is considered the central molecular mechanism underlying asthma, and Th2 cytokines are emerging therapeutic targets. However, clinical studies increasingly suggest that asthma is heterogeneous.

Objectives: To determine whether this clinical heterogeneity reflects heterogeneity in underlying molecular mechanisms related to Th2 inflammation.

View Article and Find Full Text PDF

Background: Studies have shown that genetic and sex differences strongly influence gene expression in mice. Given the diversity and complexity of transcripts produced by alternative splicing, we sought to use microarrays to establish the extent of variation found in mouse strains and genders. Here, we surveyed the effect of strain and sex on liver gene and exon expression using male and female mice from three different inbred strains.

View Article and Find Full Text PDF

Background: Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease in which the risk of disease is influenced by complex genetic and environmental contributions. Alleles of HLA-DRB1, IRF5, and STAT4 are established susceptibility genes; there is strong evidence for the existence of additional risk loci.

Methods: We genotyped more than 500,000 single-nucleotide polymorphisms (SNPs) in DNA samples from 1311 case subjects with SLE and 1783 control subjects; all subjects were North Americans of European descent.

View Article and Find Full Text PDF

We have constructed a database of alternatively spliced protein forms (ASP), consisting of 13,384 protein isoform sequences of 4422 human genes (www.bioinformatics.ucla.

View Article and Find Full Text PDF

Recently there has been much interest in assessing the role of alternative splicing in evolution. We have sought to measure functional selection pressure on alternatively spliced single-exon skips, by calculating the fraction that are an exact multiple of 3 nt in length and therefore preserve protein reading-frame in both the exon-inclusion and exon-skip splice forms. The frame-preservation ratio (defined as the number of exons that are an exact multiple of three in length, divided by the number of exons that are not) was slightly above random for both constitutive exons and alternatively spliced exons as a whole in human and mouse.

View Article and Find Full Text PDF

One of the most interesting opportunities in comparative genomics is to compare not only genome sequences but additional phenomena, such as alternative splicing, using orthologous genes in different genomes to find similarities and differences between organisms. Recently, genomics studies have suggested that 40-60% of human genes are alternatively spliced and have catalogued up to 30,000 alternative splice relationships in human genes. Here we report an analysis of 9,434 orthologous genes in human and mouse, which indicates that alternative splicing is associated with a large increase in frequency of recent exon creation and/or loss.

View Article and Find Full Text PDF

Recently, genomics analyses have demonstrated that alternative splicing is widespread in mammalian genomes (30-60% of genes reported to have multiple isoforms), and may be one of their most important mechanisms of functional regulation. However, by comparison with other genomics data such as genome annotation, SNPs, or gene expression, there exists relatively little database infrastructure for the study of alternative splicing. We have constructed an online database ASAP (the Alternative Splicing Annotation Project) for biologists to access and mine the enormous wealth of alternative splicing information coming from genomics and proteomics.

View Article and Find Full Text PDF

We have developed an automated method for discovering tissue-specific regulation of alternative splicing through a genome-wide analysis of expressed sequence tags (ESTs). Using this approach, we have identified 667 tissue-specific alternative splice forms of human genes. We validated our muscle-specific and brain-specific splice forms for known genes.

View Article and Find Full Text PDF

Recent genome-wide analyses of alternative splicing indicate that 40-60% of human genes have alternative splice forms, suggesting that alternative splicing is one of the most significant components of the functional complexity of the human genome. Here we review these recent results from bioinformatics studies, assess their reliability and consider the impact of alternative splicing on biological functions. Although the 'big picture' of alternative splicing that is emerging from genomics is exciting, there are many challenges.

View Article and Find Full Text PDF