J Med Imaging (Bellingham)
January 2020
: Placental size in early pregnancy has been associated with important clinical outcomes, including fetal growth. However, extraction of placental size from three-dimensional ultrasound (3DUS) requires time-consuming interactive segmentation methods and is prone to user variability. We propose a semiautomated segmentation technique that requires minimal user input to robustly measure placental volume from 3DUS images.
View Article and Find Full Text PDFRandom forests (RF) have long been a widely popular method in medical image analysis. Meanwhile, the closely related gradient boosted trees (GBT) have not become a mainstream tool in medical imaging despite their attractive performance, perhaps due to their computational cost. In this paper, we leverage the recent availability of an efficient open-source GBT implementation to illustrate the GBT method in a corrective learning framework, in application to the segmentation of the caudate nucleus, putamen and hippocampus.
View Article and Find Full Text PDF