Publications by authors named "Baris Calli"

The production of volatile fatty acids (VFA) through high-solids anaerobic fermentation of organic waste offers a promising route for resource recovery. This study used a batch-mode anaerobic leach bed reactor (LBR) with leachate circulation to ferment the organic fraction of municipal solid waste, producing high concentrations of butyric acid, along with notable amounts of lactic and caproic acids. These results provide valuable insights and underscore the need for process optimization within conventional fermentation systems.

View Article and Find Full Text PDF

By 2050, global sewage sludge production is expected to increase by 51 %, rising from its current level of over 45 million tons of dry solids to nearly 68 million tons. This growth is primarily driven by population growth and the implementation of increasingly stringent environmental regulations. This increase in sewage sludge volume poses substantial challenges for sustainable management due to its complex composition.

View Article and Find Full Text PDF

The aim of the study was to efficiently treat organic kitchen waste (FW) and domestic wastewater (DWW) together in an anaerobic fluidized bed bioreactor equipped with a ceramic membrane (AnFCMBR) through a sustainable approach considering energy recovery. The system operated continuously for 519 days at room temperature, and different filtration fluxes (1.7 and 5 L/m/h), hydraulic retention times (HRTs) (22 h and 7 h), and organic loading rate (OLRs) (0.

View Article and Find Full Text PDF

Sludge produced in sewage treatment plants is an important source of organic matter to be used in anaerobic digestion to produce energy-rich biogas. The biogas produced in anaerobic digesters has a critical impact on achieving carbon neutrality and improving energy self-sufficiency. After effective upgrading, biogas can be converted into biomethane with an increased CH content, resulting in a higher volumetric energy value.

View Article and Find Full Text PDF

Shifting the concept of municipal wastewater treatment to recover resources is one of the key factors contributing to a sustainable society. A novel concept based on research is proposed to recover four main bio-based products from municipal wastewater while reaching the necessary regulatory standards. The main resource recovery units of the proposed system include upflow anaerobic sludge blanket reactor for the recovery of biogas (as product 1) from mainstream municipal wastewater after primary sedimentation.

View Article and Find Full Text PDF

Prokaryotic communities and physico-chemical characteristics of 30 brine samples from the thalassohaline Tuz Lake (Salt Lake), Deep Zone, Kayacik, Kaldirim, and Yavsan salterns (Turkey) were analyzed using 16S rRNA amplicon sequencing and standard methods, respectively. (98.41% of reads) was found to dominate in these habitats in contrast to the domain (1.

View Article and Find Full Text PDF

Utilization of anaerobically stabilized sewage sludge on arable lands serve as a renewable alternative to chemical fertilizers as it enables recycling of valuable nutrients to food chain. However, probable presence of heavy metals in sewage sludge restricts the use of stabilized sludge on lands. In this study, a novel approach based on pH-controlled fermentation and anaerobic metal bioleaching was developed to reduce ecotoxicity potential of fermented sludge prior to its land application.

View Article and Find Full Text PDF

Heavy metal contamination of sewage sludge is one of the concerns preventing its land application. Traditional processes applied for stabilization of sewage sludge are still inadequate to serve sustainable solutions to heavy metal problem. In this study, fermentation and bioleaching potentials of sewage sludge were investigated in anaerobic reactors for either non-pretreated or ultrasonicated sludge at three different pH regimes (free of pH regulation, acidic, and alkaline).

View Article and Find Full Text PDF

Interest in using stabilized sewage sludge in agriculture is mainly to benefit from its nutrient content, soil conditioning properties, and water holding capacity. Therefore, sludge management practice needs to be directed from treatment liability towards the recovery of chemical assets embedded in sludge. In this study, anaerobic fermentation process integrated with a new treatment method; i.

View Article and Find Full Text PDF

Potentially toxic metals are common contaminants associated with sewage sludge, and limited information is available on migration and transformation behavior of potentially toxic metals during anaerobic digestion (AD) process. The aim of this study was to reveal the influence of volatile fatty acids (VFAs) on the solubilization of metals through VFAs-metal complexation. Addition of readily biodegradable extra carbon source at organic loading rate (OLR) of 17.

View Article and Find Full Text PDF

Anaerobic dry-fermentation of food wastes can be utilized for the production of volatile fatty acids (VFA). However, especially for high load fermentation systems, accumulation of VFAs may result in inhibition of fermentation process. In this study, separation of VFAs from synthetic mixtures via a vapor permeation membrane contactor (VPMC) system with an air-filled polytetrafluoroethylene (PTFE) membrane was assessed at various temperatures and permeate solution concentrations.

View Article and Find Full Text PDF

A design-based dynamic simulation tool was developed to evaluate the effects of altered operation conditions on the performance of a landfill leachate treating pre-anoxic oxidation ditch folowed by external ultra filtration and nano filtration membranesby using the actual influent data and operational constants collected for 18 months. In the summer of 2017, the MBR suffered from reduced membrane fluxes due to deterioration of activated sludge flocs after the failure of flow booster providing the internal circulation and decreasing influent C/N ratio. Although two external pumps were activated in place of the broken flow booster, the required internal recirculation ratio (IR) predicted by the simulation could not be provided.

View Article and Find Full Text PDF

The aim of this study was to develop a laboratory-scale anaerobic dynamic membrane bioreactor (AnDMBR) for the treatment of high-strength synthetic and real cheese whey wastewater. We determined the appropriate pore size for a convenient type of support material (nylon mesh) to optimize cake layer formation. The performance of the AnDMBRs was measured in terms of chemical oxygen demand (COD) and solids removal efficiencies.

View Article and Find Full Text PDF

This study addresses the applicability of simultaneous nitrate and sulfide removal using two-chamber bio-electrochemical systems (BES). The anode and cathode chambers of a BES were fed with the effluent of a sulfate reducing reactor and a nitrate-rich groundwater as an electron donor and acceptor sources, respectively. BES has been found to be effective for simultaneous removal of sulfide and nitrate coming from different sources and without mixing them.

View Article and Find Full Text PDF

In this study, anaerobic digestion of nitrogen-rich chicken (egg-laying hen) manure at different trace element (TE) mix doses and different total ammonia nitrogen (TAN) concentrations was investigated in batch digestion experiments. With respect to nonsupplemented TE sets, addition of TE mixture containing 1 mg/L Ni, 1 mg/L Co, 0.2 mg/L Mo, 0.

View Article and Find Full Text PDF

Recent findings showed that some trace elements essential for anaerobic digestion might be deficient in chicken (laying hens) manure. In this study, the long-term influence of trace element deficiency on anaerobic mono-digestion of chicken manure was investigated. Three bench-scale anaerobic reactors were operated with or without trace element supplementation.

View Article and Find Full Text PDF

This study pioneered the use of a single-stage methanogenic leach bed reactor (LBR) for high-solids (total solid content: 14%-16%) anaerobic mono-digestion of chicken manure. Chicken manure was loaded into the LBR in cloth sachets without adding any bulking agents. Ammonia was separated and recovered by placing a hydrophobic gas diffusion membrane in a leachate collection chamber.

View Article and Find Full Text PDF

In this study, the anaerobic digestion of egg-laying hen manure combined with membrane-based ammonia separation was investigated. Long-term continuous experiments with and without ammonia separation were performed by increasing the organic loading rate (OLR). Although the control digester was completely inhibited at an OLR and influent total Kjeldahl nitrogen (TKN) concentration of 3.

View Article and Find Full Text PDF

HS in biogas affects the co-generation performance adversely by corroding some critical components within the engine and it has to be removed in order to improve the biogas quality. This work presents the use of polydimethylsiloxane (PDMS) membrane contactor for selective removal of HS from the biogas. Experiments were carried out to evaluate the effects of different pH of absorption liquid, biogas flowrate and temperature on the absorption performances.

View Article and Find Full Text PDF

The aim of this study was to evaluate the performance of an autotrophic denitrification process for desulfurization of biogas produced from a chicken manure digester. A laboratory scale upflow fixed bed reactor (UFBR) was operated for 105 days and fed with sodium sulfide or H2S scrubbed from the biogas and nitrate as electron donor and acceptor, respectively. The S/N ratio (2.

View Article and Find Full Text PDF

The objective of this study was to predict the number of refrigerators containing CFC-11 blown isolation foam and the amount of CFC-11 banked in these refrigerators. By using a Weibull-based survival function, the number of CFC-11 containing and still-functioning refrigerators was estimated to be approximately 1.6 million in 2013 in Turkey.

View Article and Find Full Text PDF

Bio-electrochemical treatment of anaerobically pre-treated landfill leachate was investigated in batch and continuous-flow two-chambered microbial fuel cells (MFCs). A high strength young landfill leachate was pre-treated using an upflow anaerobic sludge blanket reactor and the effluent resembling medium-aged landfill leachate was fed to the anode chamber of MFCs. The highest maximum current and power densities achieved in continuous-flow MFC with hydraulic retention time (HRT) of five days were 525 mA/m(2) (8227 mA/m(3)) and 158 mW/m(2) (2482 mW/m(3)), respectively.

View Article and Find Full Text PDF

The power production performance of a membrane-less air-cathode microbial fuel cell was evaluated for 53 days. Anode and cathode electrodes and the micro-fiber cloth separator were configured by sandwiching the separator between two electrodes. In addition, the air-facing side of the cathode was covered with a spunbonded olefin sheet instead of polytetrafluoroethylene (PTFE) coating to control oxygen diffusion and water loss.

View Article and Find Full Text PDF

The effect of pH on dark fermentative H(2) production at 55 degrees C was studied using three different inocula namely windrow yard waste compost (G), anaerobic organic waste compost (H) and activated sludge (A) and 2 g/L glucose as substrate. The sequential batch experiments were performed by controlling the pH at 5, 5.5 and 6.

View Article and Find Full Text PDF

The changes in nitrifying bacterial population under cadmium loading were monitored and evaluated in a laboratory scale continuous-flow enriched nitrification system. For this purpose, the following molecular microbiological methods were used: slot-blot hybridization, denaturing gradient gel electrophoresis (DGGE), real-time PCR followed by melting curve analysis, cloning and sequence analysis. The initial cadmium concentration was incrementally increased from 1 to 10mg/l which led to a drop in ammonia removal efficiency from 99 to 10%.

View Article and Find Full Text PDF