Publications by authors named "Baris Aksanli"

Traditional systems for indoor pressure sensing and human activity recognition (HAR) rely on costly, high-resolution mats and computationally intensive neural network-based (NN-based) models that are prone to noise. In contrast, we design a cost-effective and noise-resilient pressure mat system for HAR, leveraging Velostat for intelligent pressure sensing and a novel hyperdimensional computing (HDC) classifier that is lightweight and highly noise resilient. To measure the performance of our system, we collected two datasets, capturing the static and continuous nature of human movements.

View Article and Find Full Text PDF

Brain-inspired Hyper-dimensional(HD) computing is a novel and efficient computing paradigm. However, highly parallel architectures such as Processing-in-Memory(PIM) are bottle-necked by reduction operations required such as accumulation. To reduce this bottle-neck of HD computing in PIM, we present Stochastic-HD that combines the simplicity of operations in Stochastic Computing (SC) with the complex task solving capabilities of the latest HD computing algorithms.

View Article and Find Full Text PDF

The frequency-dependent nature of hearing loss poses many challenges for hearing aid design. In order to compensate for a hearing aid user's unique hearing loss pattern, an input signal often needs to be separated into frequency bands, or channels, through a process called sub-band decomposition. In this paper, we present a real-time filter bank for hearing aids.

View Article and Find Full Text PDF

Hearing loss is a common problem affecting the quality of life for thousands of people. However, many individuals with hearing loss are dissatisfied with the quality of modern hearing aids. Amplification is the main method of compensating for hearing loss in modern hearing aids.

View Article and Find Full Text PDF

Convergence of Machine Learning, Internet of Things, and computationally powerful single-board computers has boosted research and implementation of smart spaces. Smart spaces make predictions based on historical data to enhance user experience. In this paper, we present a low-cost, low-energy smart space implementation to detect static and dynamic human activities that require simple motions.

View Article and Find Full Text PDF