It is now possible to generate large volumes of high-quality images of biomolecules at near-atomic resolution and in near-native states using cryogenic electron microscopy/electron tomography (Cryo-EM/ET). However, the precise annotation of structures like filaments and membranes remains a major barrier towards applying these methods in high-throughput. To address this, we present TARDIS (ransformer-bsed apid imensionless nstance egmentation), a machine-learning framework for fast and accurate annotation of micrographs and tomograms.
View Article and Find Full Text PDFPolyglutamylation is a reversible posttranslational modification that is catalyzed by enzymes of the tubulin tyrosine ligase-like (TTLL) family. Here, we found that TTLL11 generates a previously unknown type of polyglutamylation that is initiated by the addition of a glutamate residue to the free C-terminal carboxyl group of a substrate protein. TTLL11 efficiently polyglutamylates the Wnt signaling protein Dishevelled 3 (DVL3), thereby changing the interactome of DVL3.
View Article and Find Full Text PDFSite-specific recombinases (SSRs) are critical for achieving precise spatiotemporal control of engineered alleles. These enzymes play a key role in facilitating the deletion or inversion of loci flanked by recombination sites, resulting in the activation or repression of endogenous genes, selection markers or reporter elements. However, multiple recombination in complex alleles can be laborious.
View Article and Find Full Text PDFOur previously reported HDAC6 inhibitor (HDAC6i) Marbostat-100 (4) has provided many arguments for further clinical evaluation. By the substitution of the acidic hydrogen of 4 for different carbon residues, we were able to generate an all-carbon stereocenter, which significantly improves the hydrolytic stability of the inhibitor. Further asymmetric synthesis has shown that the (S)-configured inhibitors preferentially bind to HDAC6.
View Article and Find Full Text PDFAlphaFold is an artificial intelligence approach for predicting the three-dimensional (3D) structures of proteins with atomic accuracy. One challenge that limits the use of AlphaFold models for drug discovery is the correct prediction of folding in the absence of ligands and cofactors, which compromises their direct use. We have previously described the optimization and use of the histone deacetylase 11 (HDAC11) AlphaFold model for the docking of selective inhibitors such as FT895 and SIS17.
View Article and Find Full Text PDFHuman extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented, and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). Despite its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment.
View Article and Find Full Text PDFProstate cancer (PC) is an aggressive cancer that can progress rapidly and eventually become castrate-resistant prostate cancer (CRPC). Stage IV metastatic castrate-resistant prostate cancer (mCRPC) is an incurable late-stage cancer type with a low 5-year overall survival rate. Targeted therapeutics such as antibody-drug conjugates (ADCs) based on high-affinity monoclonal antibodies and potent drugs conjugated via smart linkers are being developed for PC management.
View Article and Find Full Text PDFHDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures.
View Article and Find Full Text PDFThe sulfonamide function is used extensively as a general building block in various inhibitory scaffolds and, more specifically, as a zinc-binding group (ZBG) of metalloenzyme inhibitors. Here, we provide biochemical, structural, and computational characterization of a metallopeptidase in complex with inhibitors, where the mono- and bisubstituted sulfamide functions are designed to directly engage zinc ions of a bimetallic enzyme site. Structural data showed that while monosubstituted sulfamides coordinate active-site zinc ions via the free negatively charged amino group in a canonical manner, their bisubstituted counterparts adopt an atypical binding pattern divergent from expected positioning of corresponding tetrahedral reaction intermediates.
View Article and Find Full Text PDFHuman extracellular 6--endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6- sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). In spite of its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment.
View Article and Find Full Text PDFHuman glutamate carboxypeptidase 2 (GCP2) from the M28B metalloprotease group is an important target for therapy in neurological disorders and an established tumor marker. However, its physiological functions remain unclear. To better understand general roles, we used the model organism Caenorhabditis elegans to genetically manipulate its three existing orthologous genes and evaluate the impact on worm physiology.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
November 2023
Prostate cancer (PCa) tops the list of cancer-related deaths in men worldwide. Prostate-specific membrane antigen (PSMA) is currently the most prominent PCa biomarker, as its expression levels are robustly enhanced in advanced stages of PCa. As such, PSMA targeting is highly efficient in PCa imaging as well as therapy.
View Article and Find Full Text PDFHistone deacetylase (HDAC) inhibitors used in the clinic typically contain a hydroxamate zinc-binding group (ZBG). However, more recent work has shown that the use of alternative ZBGs, and, in particular, the heterocyclic oxadiazoles, can confer higher isoenzyme selectivity and more favorable ADMET profiles. Herein, we report on the synthesis and biochemical, crystallographic, and computational characterization of a series of oxadiazole-based inhibitors selectively targeting the HDAC6 isoform.
View Article and Find Full Text PDFLysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used.
View Article and Find Full Text PDFAnticalin proteins directed against the prostate-specific membrane antigen (PSMA), optionally having tailored plasma half-life using PASylation technology, show promise as radioligands for PET-imaging of xenograft tumors in mice. To investigate their suitability, the short-circulating unmodified Anticalin was labeled with Ga (τ = 68 min), using the NODAGA chelator, whereas the half-life extended PASylated Anticalin was labeled with Zr (τ = 78 h), using either the linear chelator deferoxamine (Dfo) or a cyclic derivative, fusarinine C (FsC). Different PSMA targeting Anticalin versions (optionally carrying the PASylation sequence) were produced carrying a single exposed N- or C-terminal Cys residue and site-specifically conjugated with the different radiochelators maleimide chemistry.
View Article and Find Full Text PDFHistone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound ).
View Article and Find Full Text PDFSART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
Chemical immunotherapeutic strategies including Antibody Recruiting Molecules (ARMs - bivalent small molecules containing an antibody-binding domain (ABD) and a target-binding domain (TBD)) direct immune-mediated clearance of diseased cells. Anti-cancer ARM function relies on high tumor antigen valency, limiting function against lower antigen expressing tumors. To address this limitation, we report a tunable multivalent immune recruitment (MIR) platform to amplify/stabilize antibody recruitment to cells with lower antigen valencies.
View Article and Find Full Text PDFBackground: Glutamate carboxypeptidase 2 (GCP2) belongs to the M28B metalloprotease subfamily encompassing a variety of zinc-dependent exopeptidases that can be found in many eukaryotes, including unicellular organisms. Limited information exists on the physiological functions of GCP2 orthologs in mammalian tissues outside of the brain and intestine, and such data are completely absent for non-mammalian species. Here, we investigate GCP2 orthologs found in trematodes, not only as putative instrumental molecules for defining their basal function(s) but also as drug targets.
View Article and Find Full Text PDFDuring the preclinical development of small molecule inhibitors, compounds or compound libraries are typically first screened using purified target enzymes in vitro to select candidates with high potency. In the later stages of the development, however, functional cell-based assays may provide biologically more relevant data. In this chapter, we describe a detailed protocol for determining the potency of inhibitors targeting human histone deacetylase 6 in complex cellular environments.
View Article and Find Full Text PDFMutations in BRAT1, encoding BRCA1-associated ATM activator 1, have been associated with neurodevelopmental and neurodegenerative disorders characterized by heterogeneous phenotypes with varying levels of clinical severity. However, the underlying molecular mechanisms of disease pathology remain poorly understood. Here, we show that BRAT1 tightly interacts with INTS9/INTS11 subunits of the Integrator complex that processes 3' ends of various noncoding RNAs and pre-mRNAs.
View Article and Find Full Text PDFZinc-dependent histone deacetylases (HDACs) and sirtuins (SIRT) represent two different classes of enzymes which are responsible for deacylation of modified lysine side chains. The repertoire of acyl residues on lysine side chains identified is rapidly growing, and very recently lysine lactoylation was described to be involved in metabolic reprogramming. Additionally, lysine pyruvoylation represents a marker for aging and liver cirrhosis.
View Article and Find Full Text PDFClass IIa histone deacetylases (HDACs) play critical roles in vertebrate development and physiology, yet direct evidence of their intrinsic deacetylase activity and on substrate specificity regarding the peptide sequence is still missing. In this study, we designed and synthesized a combinatorial peptide library allowing us to profile class IIa HDACs sequence specificity at positions +3 through -3 from the central lysine modified by the well-accepted trifluoroacetyl function. Our data revealed a strong preference for bulky aromatic acids directly flanking the central trifluoroacetyllysine, while all class IIa HDACs disfavor positively charged residues and proline at the +1/-1 positions.
View Article and Find Full Text PDF