Publications by authors named "Barillas-Mury C"

The most advanced monoclonal antibodies (mAbs) and vaccines against malaria target the central repeat region or closely related sequences within the circumsporozoite protein (PfCSP). Here, using an antigen-agnostic strategy to investigate human antibody responses to whole sporozoites, we identified a class of mAbs that target a cryptic PfCSP epitope that is only exposed after cleavage and subsequent pyroglutamylation (pGlu) of the newly formed N terminus. This pGlu-CSP epitope is not targeted by current anti-PfCSP mAbs and is not included in the licensed malaria vaccines.

View Article and Find Full Text PDF

The establishment of a productive dengue virus (DENV) infection in the midgut epithelial cells of is critical for the viral transmission cycle. The hypothesis that DENV virions interact directly with specific mosquito midgut proteins was explored. We found that DENV serotype 2 (DENV2) pretreated with trypsin interacted with a single 31 kDa protein, identified as AAEL011180 by protein mass spectrometry.

View Article and Find Full Text PDF

A novel cellular response of midgut progenitors (stem cells and enteroblasts) to Plasmodium berghei infection was investigated in Anopheles stephensi. The presence of developing oocysts triggers proliferation of midgut progenitors that is modulated by the Jak/STAT pathway and is proportional to the number of oocysts on individual midguts. The percentage of parasites in direct contact with enteroblasts increases over time, as progenitors proliferate.

View Article and Find Full Text PDF

Background: Hemocytes are immune cells that patrol the mosquito hemocoel and mediate critical cellular defense responses against pathogens. However, despite their importance, a comprehensive transcriptome of these cells was lacking because they constitute a very small fraction of the total cells in the insect, limiting the study of hemocyte differentiation and immune function.

Results: In this study, an in-depth hemocyte transcriptome was built by extensive bulk RNA sequencing and assembly of hemocyte RNAs from adult A.

View Article and Find Full Text PDF

Malaria transmission by mosquitoes is very effective, in part because the parasite expresses a surface protein called Pfs47 that allows it to evade the mosquito immune system. Here we investigate how this protein changes the response of mosquito midgut epithelial cells to invasion by the parasite. Pfs47 is known to interact with P47Rec, a mosquito midgut receptor.

View Article and Find Full Text PDF
Article Synopsis
  • Natural IgM antibodies (IgMn) play a key role in facilitating genetic exchange among Leishmania parasites by inducing the formation of transient clumps that promote fusion and hybridization.
  • IgMn from Leishmania-free animals binds to the parasites' surface, causing significant changes in their transcript and protein expression, although this binding is partially reduced after glycosidase treatment.
  • Increased hybrid formation occurs in sand flies that receive IgMn through a second blood meal, demonstrating a strong link between host antibodies and parasite genetic diversity, ultimately enhancing the fitness of Leishmania.
View Article and Find Full Text PDF

A novel cellular response of midgut progenitors (stem cells and enteroblasts) to infection was investigated in The presence of developing oocysts triggers proliferation of midgut progenitors that is modulated by the Jak/STAT pathway, and proportional to the number of oocysts on individual midguts. The percentage of parasites in direct contact with enteroblasts increases over time, as progenitors proliferate. Enhancing proliferation of progenitors significantly decreases oocyst numbers, while limiting proliferation increases oocyst survival.

View Article and Find Full Text PDF

Recent work demonstrating that asymptomatic carriers of P. falciparum parasites make up a large part of the infectious reservoir highlights the need for an effective malaria vaccine. Given the historical challenges of vaccine development, multiple parasite stages have been targeted, including the sexual stages required for transmission.

View Article and Find Full Text PDF

Aedes aegypti mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an extracellular layer that surrounds the blood bolus. It acts as an immune barrier that prevents direct contact of bacteria with midgut epithelial cells during blood digestion.

View Article and Find Full Text PDF
Article Synopsis
  • - Malaria likely started when a gorilla malaria parasite adapted to humans, with the Pfs47 protein playing a key role in helping the parasite evade the mosquito immune system and adapt to different species of mosquitoes.
  • - Genetic analysis of over 4,900 gene sequences indicates that regions like Asia and Papua New Guinea have strains that are more compatible with Asian mosquito vectors, suggesting these populations adapted more readily to them from ancestral forms.
  • - Experimental infections show that transformed parasites were better at evading the immune systems of Asian malaria vectors, indicating that compatibility with Asian mosquito receptors allowed for the spread of malaria to Asia without prior adaptation to African vectors.
View Article and Find Full Text PDF

Many endemic poverty-associated diseases, such as malaria and leishmaniasis, are transmitted by arthropod vectors. Pathogens must interact with specific molecules in the vector gut, the microbiota, and the vector immune system to survive and be transmitted. The vertebrate host, in turn, is infected when the pathogen and vector-derived factors, such as salivary proteins, are delivered into the skin by a vector bite.

View Article and Find Full Text PDF

During its life cycle, Plasmodium, the malaria parasite, is exposed to the human and mosquito complement systems. Early experiments demonstrated that activation of complement can pose a serious threat to parasites, but recent studies revealed complement-evasion mechanisms important for parasite survival. Blood-stage parasites and gametes recruit regulators to neutralize human complement activation, while ookinetes inhibit mosquito complement by disrupting epithelial nitration in response to midgut invasion.

View Article and Find Full Text PDF

Activation of signaling in by silencing , a suppressor of this pathway, enhances local release of hemocyte-derived microvesicles (HdMv), promoting activation of the mosquito complement-like system, which eliminates ookinetes. We uncovered the mechanism of this immune enhancement. silencing triggers a -mediated differentiation of granulocytes to the megacyte lineage, a new subpopulation of giant cells, resulting in a dramatic increase in the proportion of circulating megacytes.

View Article and Find Full Text PDF

Glutaminyl cyclase (QC) modifies N-terminal glutamine or glutamic acid residues of target proteins into cyclic pyroglutamic acid (pGlu). Here, we report the biochemical and functional analysis of QC. We show that sporozoites of QC-null mutants of rodent and human malaria parasites are recognized by the mosquito immune system and melanized when they reach the hemocoel.

View Article and Find Full Text PDF

Transmission-blocking vaccines (TBVs), pioneered by Richard Carter and others, aim to prevent parasite development in the mosquito vector and are a promising new tool for malaria elimination. Pfs47, recently identified as a TBV target, is a three-domain 6-cysteine protein on the surface of Plasmodium falciparum sexual stages. Pfs47 allows the parasite to evade mosquito immunity and is key for P.

View Article and Find Full Text PDF

Combinations of monoclonal antibodies (mAbs) against different epitopes on the same antigen synergistically neutralize many viruses. However, there are limited studies assessing whether combining human mAbs against distinct regions of the Plasmodium falciparum (Pf) circumsporozoite protein (CSP) enhances in vivo protection against malaria compared to each mAb alone or whether passive transfer of PfCSP mAbs would improve protection following vaccination against PfCSP. Here, we isolated a panel of human mAbs against the subdominant C-terminal domain of PfCSP (C-CSP) from a volunteer immunized with radiation-attenuated Pf sporozoites.

View Article and Find Full Text PDF

Immune priming in is mediated by the systemic release of a hemocyte differentiation factor (HDF), a complex of lipoxin A bound to Evokin, a lipid carrier. HDF increases the proportion of circulating granulocytes and enhances mosquito cellular immunity. Here, we show that Evokin is present in hemocytes and fat-body cells, and messenger RNA (mRNA) expression increases significantly after immune priming.

View Article and Find Full Text PDF

As countries work towards malaria elimination, it is important to monitor imported cases to prevent reestablishment of local transmission. The Plasmodium falciparum Pfs47 gene has strong geographic population structure, because only those parasites with Pfs47 haplotypes compatible with the mosquito vector species in a given continent are efficiently transmitted. Analysis of 4,971 world-wide Pfs47 sequences identified two SNPs (at 707 and 725 bp) as sufficient to establish the likely continent of origin of P.

View Article and Find Full Text PDF

Immunoglobulin (Ig)A antibodies play a critical role in protection against mucosal pathogens. However, the role of serum IgA in immunity to nonmucosal pathogens, such as , is poorly characterized, despite being the second most abundant isotype in blood after IgG. Here, we investigated the circulating IgA response in humans to sporozoites that are injected into the skin by mosquitoes and migrate to the liver via the bloodstream to initiate malaria infection.

View Article and Find Full Text PDF

The development of effective malaria vaccines remains a global health priority. In addition to an effective vaccine, there is urgent demand for effective delivery technologies that can be easily deployed. The need for effective vaccine delivery tools is particularly pertinent in resource-poor settings where access to healthcare is limited.

View Article and Find Full Text PDF

Malaria eradication is a global priority but requires innovative strategies. Humoral immune responses attack different parasite stages, and antibody-based therapy may prevent malaria infection or transmission. Here, we discuss targets of monoclonal antibodies in mosquito sexual stages of Plasmodium.

View Article and Find Full Text PDF

Discovering potent human monoclonal antibodies (mAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on sporozoites (SPZ) and elucidating their mechanisms of neutralization will facilitate translation for passive prophylaxis and aid next-generation vaccine development. Here, we isolated a neutralizing human mAb, L9 that preferentially bound NVDP minor repeats of PfCSP with high affinity while cross-reacting with NANP major repeats. L9 was more potent than six published neutralizing human PfCSP mAbs at mediating protection against mosquito bite challenge in mice.

View Article and Find Full Text PDF