Background And Aims: Cardiac fibrosis in response to injury leads to myocardial stiffness and heart failure. At the cellular level, fibrosis is triggered by the conversion of cardiac fibroblasts (CF) into extracellular matrix-producing myofibroblasts. miR-24-3p regulates this process in animal models.
View Article and Find Full Text PDFThis work introduces the first atrial-specific in-silico human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) model, based on a set of phenotype-specific I,I and I membrane currents. This model is built on novel in-vitro experimental data recently published by some of the co-authors to simulate the paced action potential of matured atrial-like hiPSC-CMs. The model consists of a system of stiff ordinary differential equations depending on several parameters, which have been tuned by automatic optimization techniques to closely match selected experimental biomarkers.
View Article and Find Full Text PDFBackground: Scientific and clinical interest in extracellular vesicles (EVs) is growing. EVs that expose tissue factor (TF) bind factor VII/VIIa and can trigger coagulation. Highly procoagulant TF-exposing EVs are detectable in the circulation in various diseases, such as sepsis, COVID-19, or cancer.
View Article and Find Full Text PDFBackground: We previously demonstrated that the human amniotic fluid (hAF) from II trimester of gestation is a feasible source of stromal progenitors (human amniotic fluid stem cells, hAFSC), with significant paracrine potential for regenerative medicine. Extracellular vesicles (EVs) separated and concentrated from hAFSC secretome can deliver pro-survival, proliferative, anti-fibrotic and cardioprotective effects in preclinical models of skeletal and cardiac muscle injury. While hAFSC-EVs isolation can be significantly influenced by in vitro cell culture, here we profiled EVs directly concentrated from hAF as an alternative option and investigated their paracrine potential against oxidative stress.
View Article and Find Full Text PDFCardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure.
View Article and Find Full Text PDFExtracellular vesicles (EVs), crucial mediators of cell-to-cell communication, hold significant diagnostic potential due to their ability to concentrate protein biomarkers in bodily fluids. However, challenges in isolating EVs from biological specimens hinder their widespread use. The preferred strategy involves direct analysis, integrating isolation and analysis solutions, with immunoaffinity methods currently dominating.
View Article and Find Full Text PDFConditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV.
View Article and Find Full Text PDFRecently, membrane devices and processes have been applied for the separation and concentration of subcellular components such as extracellular vesicles (EVs), which play a diagnostic and therapeutic role in many pathological conditions. However, the separation and isolation of specific EV populations from other components found in biological fluids is still challenging. Here, we developed a peptide-functionalized hollow fiber (HF) membrane module to achieve the separation and enrichment of highly pure EVs derived from the culture media of human cardiac progenitor cells.
View Article and Find Full Text PDFDespite improvements in clinical outcomes following acute myocardial infarction, mortality remains high, especially in patients with severely reduced left ventricular ejection fraction (LVEF <30%), emphasizing the need for effective cardioprotective strategies adjunctive to recanalization. Traditional cell therapy has shown equivocal success, shifting the focus to innovative cardioactive biologicals and cell mimetic therapies, particularly extracellular vesicles (EVs). EVs, as carriers of non-coding RNAs and other essential biomolecules, influence neighbouring and remote cell function in a paracrine manner.
View Article and Find Full Text PDFThis study compares the impact of two isolation methods, ultracentrifugation (UC) and size exclusion chromatography (SEC), on small extracellular vesicles (sEVs) from primary human cardiac mesenchymal-derived progenitor cells (CPCs). sEV_UC and sEV_SEC exhibit similar size, marker expression, and miRNA cargo, but sEV_UC contains notably higher total protein levels. In vitro assays show that sEV_UC, despite an equal particle count, induces more robust ERK phosphorylation, cytoprotection, and proliferation in iPS-derived cardiomyocytes (iPS-CMs) compared to sEV_SEC.
View Article and Find Full Text PDFJ Extracell Vesicles
October 2023
The widely overlapping physicochemical properties of lipoproteins (LPs) and extracellular vesicles (EVs) represents one of the main obstacles for the isolation and characterization of these pervasive biogenic lipid nanoparticles. We herein present the application of an atomic force microscopy (AFM)-based quantitative morphometry assay to the rapid nanomechanical screening of mixed LPs and EVs samples. The method can determine the diameter and the mechanical stiffness of hundreds of individual nanometric objects within few hours.
View Article and Find Full Text PDFBackground: Electrocardiogram (ECG) has proven to be useful for early detection of cardiac involvement in Anderson-Fabry disease (AFD); however, little evidence is available on the association between ECG alterations and the progression of the disease.
Aim And Methods: To perform a cross sectional comparison of ECG abnormalities throughout different left ventricular hypertrophy (LVH) severity subgroups, providing ECG patterns specific of the progressive AFD stages. 189 AFD patients from a multicenter cohort underwent comprehensive ECG analysis, echocardiography, and clinical evaluation.
This paper tests whether visual nudges help direct attention towards existing instructions designed to increase waste sorting accuracy. The study was conducted in a quasi-experimental setting over a period of 9 weeks in two buildings of a large UK university campus. Two treatments on recycling behaviour were tested against a control group: one considered the impact of visual nudges in the form of human eyes; the other one combined human eye with pre-existing sorting instructions.
View Article and Find Full Text PDFBackground: Exosomes (EXOs), tiny extracellular vesicles that facilitate cell-cell communication, are being explored as a heart failure treatment, although the features of the cell source restrict their efficacy. Fibroblasts the most prevalent non-myocyte heart cells, release poor cardioprotective EXOs. A noninvasive method for manufacturing fibroblast-derived exosomes (F-EXOs) that target cardiomyocytes and slow cardiac remodeling is expected.
View Article and Find Full Text PDFThe development of an extracellular vesicles (EV)-based therapeutic product requires the implementation of reproducible and scalable, purification protocols for clinical-grade EV. Commonly used isolation methods including ultracentrifugation, density gradient centrifugation, size exclusion chromatography, and polymer-based precipitation, faced limitations such as yield efficiency, EV purity, and sample volume. We developed a GMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving, tangential flow filtration (TFF).
View Article and Find Full Text PDFHuman induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) constitute a mixed population of ventricular-, atrial-, nodal-like cells, limiting the reliability for studying chamber-specific disease mechanisms. Previous studies characterised CM phenotype based on action potential (AP) morphology, but the classification criteria were still undefined. Our aim was to use in silico models to develop an automated approach for discriminating the electrophysiological differences between hiPSC-CM.
View Article and Find Full Text PDFCardiac resynchronization therapy (CRT) has become a valuable addition to the treatment options for heart failure, in particular for patients with disturbances in electrical conduction that lead to regionally different contraction patterns (dyssynchrony). Dyssynchronous hearts show extensive molecular and cellular remodeling, which has primarily been investigated in experimental animals. Evidence showing that at least several miRNAs play a role in this remodeling is increasing.
View Article and Find Full Text PDF