The rise in multidrug-resistant bacteria highlights the critical need for novel antibiotics. This study explores clovibactin-like compounds as potential therapeutic agents targeting lipid II, a crucial component in bacterial cell wall synthesis, using in silico techniques. A total of 2624 clovibactin analogs were sourced from the PubChem database and screened using ProTox 3.
View Article and Find Full Text PDFContext: This study investigates the potential of leveraging molecular properties, as determined by MD-LOVIs software and machine learning techniques, to predict the ability of compounds to cross the blood-brain barrier (BBB). Accurate prediction of BBB permeation is critical for the development of central nervous system (CNS) drugs. The study applies various machine learning models, including both classification and regression techniques, to predict BBB passage and molecular activity.
View Article and Find Full Text PDFPeptides are promising drug development frameworks that have been hindered by intrinsic undesired properties including hemolytic activity. We aim to get a better insight into the chemical space of hemolytic peptides using a novel approach based on network science and data mining. Metadata networks (METNs) were useful to characterize and find general patterns associated with hemolytic peptides, whereas Half-Space Proximal Networks (HSPNs), represented the hemolytic peptide space.
View Article and Find Full Text PDFThe role of the gut microbiota and its interplay with host metabolic health, particularly in the context of type 2 diabetes mellitus (T2DM) management, is garnering increasing attention. Dipeptidyl peptidase 4 (DPP4) inhibitors, commonly known as gliptins, constitute a class of drugs extensively used in T2DM treatment. However, their potential interactions with gut microbiota remain poorly understood.
View Article and Find Full Text PDFThe desirable pharmacological properties and a broad number of therapeutic activities have made peptides promising drugs over small organic molecules and antibody drugs. Nevertheless, toxic effects, such as hemolysis, have hampered the development of such promising drugs. Hence, a reliable computational tool to predict peptide hemolytic toxicity is enormously useful before synthesis and experimental evaluation.
View Article and Find Full Text PDFNotwithstanding the wide adoption of the OECD principles (or best practices) for QSAR modeling, disparities between in silico predictions and experimental results are frequent, suggesting that model predictions are often too optimistic. Of these OECD principles, the applicability domain (AD) estimation has been recognized in several reports in the literature to be one of the most challenging, implying that the actual reliability measures of model predictions are often unreliable. Applying tree-based error analysis workflows on 5 QSAR models reported in the literature and available in the QsarDB repository, i.
View Article and Find Full Text PDFUbiquitin-proteasome system (UPS) is a highly regulated mechanism of intracellular protein degradation and turnover. The UPS is involved in different biological activities, such as the regulation of gene transcription and cell cycle. Several researchers have applied cheminformatics and artificial intelligence methods to study the inhibition of proteasomes, including the prediction of UPP inhibitors.
View Article and Find Full Text PDFInflammasomes are multiprotein complexes that represent critical elements of the inflammatory response. The dysregulation of the best-characterized complex, the NLRP3 inflammasome, has been linked to the pathogenesis of diseases such as multiple sclerosis, type 2 diabetes mellitus, Alzheimer's disease, and cancer. While there exist molecular inhibitors specific for the various components of inflammasome complexes, no currently reported inhibitors specifically target NLRP3 homo-oligomerization.
View Article and Find Full Text PDFScientific and consumer interest in healthy foods (also known as functional foods), nutraceuticals and cosmeceuticals has increased in the recent years, leading to an increased presence of these products in the market. However, the regulations across different countries that define the type of claims that may be made, and the degree of evidence required to support these claims, are rather inconsistent. Moreover, there is also controversy on the effectiveness and biological mode of action of many of these products, which should undergo an exhaustive approval process to guarantee the consumer rights.
View Article and Find Full Text PDFEnviron Toxicol Pharmacol
October 2021
Multiple substances are considered endocrine disrupting chemicals (EDCs). However, there is a significant gap in the early prioritization of EDC's effects. In this work, in silico and in vitro methods were used to model estrogenicity.
View Article and Find Full Text PDFThere is currently no effective dengue virus (DENV) therapeutic. We aim to develop a genetic algorithm-based framework for the design of peptides with possible DENV inhibitory activity. A Python-based tool (denominated AutoPepGEN) based on a DENV support vector machine classifier as the objective function was implemented.
View Article and Find Full Text PDFChagas disease is endemic to 21 Latin American countries and is a great public health problem in that region. Current chemotherapy remains unsatisfactory; consequently the need to search for new drugs persists. Here we present a new approach to identify novel compounds with potential anti-chagasic action.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) is a chemical sensor upregulating the transcription of responsive genes associated with endocrine homeostasis, oxidative balance and diverse metabolic, immunological and inflammatory processes, which have raised the pharmacological interest on its modulation. Herein, a novel set of 32 unsymmetrical triarylmethane (TAM) class of structures has been synthesized, characterized and their AhR transcriptional activity evaluated using a cell-based assay. Eight of the assayed TAM compounds (14, 15, 18, 19, 21, 22, 25, 28) exhibited AhR agonism but none of them showed antagonist effects.
View Article and Find Full Text PDFWe present a novel Java-based program denominated PeptiDesCalculator for computing peptide descriptors. These descriptors include: redefinitions of known protein parameters to suite the peptide domain, generalization schemes for the global descriptions of peptide characteristics, as well as empirical descriptors based on experimental evidence on peptide stability and interaction propensity. The PeptiDesCalculator software provides a user-friendly Graphical User Interface (GUI) and is parallelized to maximize the use of computational resources available in current work stations.
View Article and Find Full Text PDFOver the past few decades, virtual high-throughput screening (vHTS) and molecular dynamics simulations have become effective and widely used tools in the initial stages of drug discovery efforts. These methods allow a great number of druglike molecules to be screened quickly and inexpensively. Unfortunately, however, the accuracies of both these methods rely on the quality of the underlying molecular mechanics force fields (FFs), which are often poor.
View Article and Find Full Text PDFIn the present report we evaluate the possible utility of the Generative Adversarial Networks (GANs) in mapping the chemical structural space for molecular property profiles, with the goal of subsequently yielding synthetic (artificial) samples for ligand-based molecular modeling. Two case studies are considered: BACE-1 (β-Secretase 1) and DENV (Dengue Virus) inhibitory activities, with the former focused on data populating and the latter on data balancing tasks. We train GANs using subsamples extracted from datasets for each bioactivity endpoint, and apply the trained networks in generating synthetic examples from the respective bioactivity chemical spaces.
View Article and Find Full Text PDFThe aryl hydrocarbon receptor (AhR) plays a key role in the regulation of gene expression in metabolic machinery and detoxification systems. In the recent years, this receptor has attracted interest as a therapeutic target for immunological, oncogenic and inflammatory conditions. In the present report, in silico and in vitro approaches were combined to study the activation of the AhR.
View Article and Find Full Text PDFBreast cancer (BC) is the leading cause of cancer-related death among women and the most commonly diagnosed cancer worldwide. Although in recent years large-scale efforts have focused on identifying new therapeutic targets, a better understanding of BC molecular processes is required. Here we focused on elucidating the molecular hallmarks of BC heterogeneity and the oncogenic mutations involved in precision medicine that remains poorly defined.
View Article and Find Full Text PDFSAR QSAR Environ Res
March 2020
The aryl hydrocarbon receptor (AhR) plays an important role in several biological processes such as reproduction, immunity and homoeostasis. However, little is known on the chemical-structural and physicochemical features that influence the activity of AhR antagonistic modulators. In the present report, in vitro AhR antagonistic activity evaluations, based on a chemical-activated luciferase gene expression (AhR-CALUX) bioassay, and an extensive literature review were performed with the aim of constructing a structurally diverse database of contaminants and potentially toxic chemicals.
View Article and Find Full Text PDFJ Comput Aided Mol Des
November 2019
Imbalanced datasets, comprising of more inactive compounds relative to the active ones, are a common challenge in ligand-based model building workflows for drug discovery. This is particularly true for neglected tropical diseases since efforts to identify therapeutics for these diseases are often limited. In this report, we analyze the performance of several undersampling strategies in modeling the Dengue Virus 2 (DENV2) inhibitory activity, as well as the anti-flaviviral activities for the West Nile (WNV) and Zika (ZIKV) viruses.
View Article and Find Full Text PDFIn this report, we introduce a set of aggregation operators (AOs) to calculate global and local (group and atom type) molecular descriptors (MDs) as a generalization of the classical approach of molecular encoding using the sum of the atomic (or fragment) contributions. These AOs are implemented in a new and free software denominated MD-LOVIs ( http://tomocomd.com/md-lovis ), which allows for the calculation of MDs from atomic weights vector and LOVIs (local vertex invariants).
View Article and Find Full Text PDFApplications of computational methods to predict binding affinities for protein/drug complexes are routinely used in structure-based drug discovery. Applications of these methods often rely on empirical force fields (FFs) and their associated parameter sets and atom types. However, it is widely accepted that FFs cannot accurately cover the entire chemical space of drug-like molecules, due to the restrictive cost of parametrization and the poor transferability of existing parameters.
View Article and Find Full Text PDFBiaryl molecules are ubiquitous pharmacophores found in natural products and pharmaceuticals. In spite of this, existing molecular mechanics force fields are unable to accurately reproduce their torsional energy profiles, except for a few well-parametrized cases. This effectively limits the ability of structure-based drug design methods to correctly identify hits involving biaryls with confidence (e.
View Article and Find Full Text PDFA lot of research initiatives in the last decades have been focused on the search of new strategies to treat depression. However, despite the availability of various antidepressants, current treatment is still far from ideal. Unwanted side effects, modest response rates and the slow onset of action are the main shortcomings.
View Article and Find Full Text PDFConsensus strategy was proved to be highly efficient in the recognition of gene-disease association. Therefore, the main objective of this study was to apply theoretical approaches to explore genes and communities directly involved in breast cancer (BC) pathogenesis. We evaluated the consensus between 8 prioritization strategies for the early recognition of pathogenic genes.
View Article and Find Full Text PDF