Three-dimensional multicellular aggregates (MCAs) like organoids and spheroids have become essential tools to study the biological mechanisms involved in the progression of diseases. In cancer research, they are now widely used as in vitro models for drug testing. However, their analysis still relies on tedious manual procedures, which hinders their routine use in large-scale biological assays.
View Article and Find Full Text PDFSoft devices made of nanoliter hydrogel beads use ions for computation.
View Article and Find Full Text PDFThe design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells.
View Article and Find Full Text PDFSingle cell multimodal analysis is at the frontier of single cell research: it defines the roles and functions of distinct cell types through simultaneous analysis to provide unprecedented insight into cellular processes. Current single cell approaches are rapidly moving toward multimodal characterizations. It replaces one-dimensional single cell analysis, for example by allowing for simultaneous measurement of transcription and post-transcriptional regulation, epigenetic modifications and/or surface protein expression.
View Article and Find Full Text PDFThe process of optimizing the properties of biological molecules is paramount for many industrial and medical applications. Directed evolution is a powerful technique for modifying and improving biomolecules such as proteins or nucleic acids (DNA or RNA). Mimicking the mechanism of natural evolution, one can enhance a desired property by applying a suitable selection pressure and sorting improved variants.
View Article and Find Full Text PDFTrypanosome parasites are infecting mammals in Sub-Saharan Africa and are transmitted between hosts through bites of the tsetse fly. The transmission from the insect vector to the mammal host causes a number of metabolic and physiological changes. A fraction of the population continuously adapt to the immune system of the host, indicating heterogeneity at the population level.
View Article and Find Full Text PDFA swarm of simple active particles confined in a flexible scaffold is a promising system to make mobile and deformable superstructures. These soft structures can perform tasks that are difficult to carry out for monolithic robots because they can infiltrate narrow spaces, smaller than their size, and move around obstacles. To achieve such tasks, the origin of the forces the superstructures develop, how they can be guided, and the effects of external environment, especially geometry and the presence of obstacles, need to be understood.
View Article and Find Full Text PDFAdaptation of cell populations to environmental changes is mediated by phenotypic variability at the single-cell level. Enzyme activity is a key factor in cell phenotype and the expression of the alkaline phosphatase activity (APA) is a fundamental phytoplankton strategy for maintaining growth under phosphate-limited conditions. Our aim was to compare the APA among cells and species revived from sediments of the Bay of Brest (Brittany, France), corresponding to a pre-eutrophication period (1940's) and a beginning of a post-eutrophication period (1990's) during which phosphate concentrations have undergone substantial variations.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFNature integrates complex biosynthetic and energy-converting tasks within compartments such as chloroplasts and mitochondria. Chloroplasts convert light into chemical energy, driving carbon dioxide fixation. We used microfluidics to develop a chloroplast mimic by encapsulating and operating photosynthetic membranes in cell-sized droplets.
View Article and Find Full Text PDFFunctional screenings in droplet-based microfluidics require the analysis of various types of activities of individual cells. When screening for enzymatic activities, the link between the enzyme of interest and the information-baring molecule, the DNA, must be maintained to relate phenotypes to genotypes. This linkage is crucial in directed evolution experiments or for the screening of natural diversity.
View Article and Find Full Text PDFWe present an acoustofluidic device for fluorescently triggered merging of surfactant-stabilized picoliter droplet pairs at high throughput. Droplets that exceed a preset fluorescence threshold level are selectively merged by a traveling surface acoustic wave (T-SAW) pulse. We characterize the operation of our device by analyzing the merging efficiency as a function of acoustic pulse position, duration, and acoustic pressure amplitude.
View Article and Find Full Text PDFThe high-throughput selection of individual droplets is an essential function in droplet-based microfluidics. Fluorescence-activated droplet sorting is achieved using electric fields triggered at rates up to 30 kHz, providing the ultra-high throughput relevant in applications where large libraries of compounds or cells must be analyzed. To achieve such sorting frequencies, electrodes have to create an electric field distribution that generates maximal actuating forces on the droplet while limiting the induced droplet deformation and avoid disintegration.
View Article and Find Full Text PDFFluorescence-activated droplet sorting (FADS) is one of the most important features provided by droplet-based microfluidics. However, to date, it does not allow to compete with the high-throughput multiplexed sorting capabilities offered by flow cytometery. Here, we demonstrate the use of a dielectrophoretic-based FADS, allowing to sort up to five different droplet populations simultaneously.
View Article and Find Full Text PDFPlankton produces numerous chemical compounds used in cosmetics and functional foods. They also play a key role in the carbon budget on the Earth. In a context of global change, it becomes important to understand the physiological response of these microorganisms to changing environmental conditions.
View Article and Find Full Text PDFSelf-sustained metabolic pathways in microcompartments are the corner-stone for living systems. From a technological viewpoint, such pathways are a mandatory prerequisite for the reliable design of artificial cells functioning out-of-equilibrium. Here we develop a microfluidic platform for the miniaturization and analysis of metabolic pathways in man-made microcompartments formed of water-in-oil droplets.
View Article and Find Full Text PDFSimple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas.
View Article and Find Full Text PDFA large German research consortium mainly within the Max Planck Society ("MaxSynBio") was formed to investigate living systems from a fundamental perspective. The research program of MaxSynBio relies solely on the bottom-up approach to synthetic biology. MaxSynBio focuses on the detailed analysis and understanding of essential processes of life through modular reconstitution in minimal synthetic systems.
View Article and Find Full Text PDFThe fabrication of stable colloidosomes derived from water-in-water Pickering-like emulsions are described that were produced by addition of fluorescent amine-modified polystyrene latex beads to an aqueous two-phase system consisting of dextran-enriched droplets dispersed in a PEG-enriched continuous phase. Addition of polyacrylic acid followed by carbodiimide-induced crosslinking with dextran produces hydrogelled droplets capable of reversible swelling and selective molecular uptake and exclusion. Colloidosomes produced specifically in all-water systems could offer new opportunities in microencapsulation and the bottom-up construction of synthetic protocells.
View Article and Find Full Text PDFOne way for phytoplankton to survive orthophosphate depletion is to utilize dissolved organic phosphorus by expressing alkaline phosphatase. The actual methods to assay alkaline phosphate activity-either in bulk or as a presence/absence of enzyme activity-fail to provide information on individual living cells. In this context, we develop a new microfluidic method to compartmentalize cells in 0.
View Article and Find Full Text PDFCompartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed 'droplet-stabilized giant unilamellar vesicles (dsGUVs)'.
View Article and Find Full Text PDFWe report on the formation of surfactant-based complex catanionic coacervate droplets in mixtures of decanoic acid and cetylpyridinium chloride or cetyltrimethylammonium bromide. We show that coacervation occurs over a broad range of composition, pH, and ionic strength. The catanionic coacervates consist of elongated micelles, sequester a wide range of solutes including water-soluble organic dyes, polysaccharides, proteins, enzymes, and DNA, and can be structurally stabilized by sodium alginate or gelatin-based hydrogelation.
View Article and Find Full Text PDFDroplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria.
View Article and Find Full Text PDFEmulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening.
View Article and Find Full Text PDFWe use a microfluidic flow-focusing device with integrated electrodes for controlling the production of water-in-oil drops. In a previous work, we reported that very long jets can be formed upon application of AC fields. We now study in detail the appearance of the long jets as a function of the electrical parameters, i.
View Article and Find Full Text PDF