Publications by authors named "Bareille C"

Rare-earth intermetallic compounds exhibit rich phenomena induced by the interplay between localized f orbitals and conduction electrons. However, since the energy scale of the crystal-electric-field splitting is only a few millielectronvolts, the nature of the mobile electrons accompanied by collective crystal-electric-field excitations has not been unveiled. Here, we examine the low-energy electronic structures of CeSb through the anomalous magnetostructural transitions below the Néel temperature, ~17 K, termed the 'devil's staircase', using laser angle-resolved photoemission, Raman and neutron scattering spectroscopies.

View Article and Find Full Text PDF

Nematicity is ubiquitous in the electronic phases of iron-based superconductors. The order parameter that characterizes the nematic phase has been investigated in momentum space, but its real-space arrangement remains largely unexplored. We use linear dichroism (LD) in a low-temperature laser–photoemission electron microscope to map out the nematic order parameter of nonmagentic FeSe and antiferromagnetic BaFe(AsP).

View Article and Find Full Text PDF

In matter, any spontaneous symmetry breaking induces a phase transition characterized by an order parameter, such as the magnetization vector in ferromagnets, or a macroscopic many-electron wave function in superconductors. Phase transitions with unknown order parameter are rare but extremely appealing, as they may lead to novel physics. An emblematic and still unsolved example is the transition of the heavy fermion compound [Formula: see text] (URS) into the so-called hidden-order (HO) phase when the temperature drops below [Formula: see text] K.

View Article and Find Full Text PDF

Control of the phase transition from topological to normal insulators can allow for an on/off switching of spin current. While topological phase transitions have been realized by elemental substitution in semiconducting alloys, such an approach requires preparation of materials with various compositions. Thus it is quite far from a feasible device application, which demands a reversible operation.

View Article and Find Full Text PDF

Low-dimensional van der Waals materials have been extensively studied as a platform with which to generate quantum effects. Advancing this research, topological quantum materials with van der Waals structures are currently receiving a great deal of attention. Here, we use the concept of designing topological materials by the van der Waals stacking of quantum spin Hall insulators.

View Article and Find Full Text PDF

In cuprate superconductors with high critical transition temperature ( ), light hole-doping to the parent compound, which is an antiferromagnetic Mott insulator, has been predicted to lead to the formation of small Fermi pockets. These pockets, however, have not been observed. Here, we investigate the electronic structure of the five-layered BaCaCuO(F,O), which has inner copper oxide (CuO) planes with extremely low disorder, and find small Fermi pockets centered at (π/2, π/2) of the Brillouin zone by angle-resolved photoemission spectroscopy and quantum oscillation measurements.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Interfacing bulk conducting topological Bi_{2}Se_{3} films with s-wave superconductors initiates strong superconducting order in the nontrivial surface states. However, bulk insulating topological (Bi_{1-x}Sb_{x})_{2}Te_{3} films on bulk Nb instead exhibit a giant attenuation of surface superconductivity, even for films only two layers thick. This massive suppression of proximity pairing is evidenced by ultrahigh-resolution band mappings and by contrasting quantified superconducting gaps with those of heavily n-doped topological Bi_{2}Se_{3}/Nb.

View Article and Find Full Text PDF

Solids with competing interactions often undergo complex phase transitions with a variety of long-periodic modulations. Among such transition, devil's staircase is the most complex phenomenon, and for it, CeSb is the most famous material, where a number of the distinct phases with long-periodic magnetostructures sequentially appear below the Néel temperature. An evolution of the low-energy electronic structure going through the devil's staircase is of special interest, which has, however, been elusive so far despite 40 years of intense research.

View Article and Find Full Text PDF

The major breakthroughs in understanding of topological materials over the past decade were all triggered by the discovery of the Z-type topological insulator-a type of material that is insulating in its interior but allows electron flow on its surface. In three dimensions, a topological insulator is classified as either 'strong' or 'weak', and experimental confirmations of the strong topological insulator rapidly followed theoretical predictions. By contrast, the weak topological insulator (WTI) has so far eluded experimental verification, because the topological surface states emerge only on particular side surfaces, which are typically undetectable in real three-dimensional crystals.

View Article and Find Full Text PDF

Experimental determinations of bulk band topology in the solid states have been so far restricted to only indirect investigation through the probing of surface states predicted by electronic structure calculations. We here present an alternative approach to determine the band topology by means of bulk-sensitive soft x-ray angle-resolved photoemission spectroscopy. We investigate the bulk electronic structures of the series materials, Ce monopnictides (CeP, CeAs, CeSb, and CeBi).

View Article and Find Full Text PDF

Weyl fermions have been observed as three-dimensional, gapless topological excitations in weakly correlated, inversion-symmetry-breaking semimetals. However, their realization in spontaneously time-reversal-symmetry-breaking phases of strongly correlated materials has so far remained hypothetical. Here, we report experimental evidence for magnetic Weyl fermions in MnSn, a non-collinear antiferromagnet that exhibits a large anomalous Hall effect, even at room temperature.

View Article and Find Full Text PDF

We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd_{2}Ir_{2}O_{7} through its magnetic metal-insulator transition. Our data reveal that metallic Nd_{2}Ir_{2}O_{7} has a quadratic band, touching the Fermi level at the Γ point, similar to that of Pr_{2}Ir_{2}O_{7}. The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates.

View Article and Find Full Text PDF

Two-dimensional electron gases (2DEGs) forming at the interfaces of transition metal oxides exhibit a range of properties, including tunable insulator-superconductor-metal transitions, large magnetoresistance, coexisting ferromagnetism and superconductivity, and a spin splitting of a few meV (refs 10, 11). Strontium titanate (SrTiO3), the cornerstone of such oxide-based electronics, is a transparent, non-magnetic, wide-bandgap insulator in the bulk, and has recently been found to host a surface 2DEG (refs 12-15). The most strongly confined carriers within this 2DEG comprise two subbands, separated by an energy gap of 90 meV and forming concentric circular Fermi surfaces.

View Article and Find Full Text PDF

Spontaneous symmetry breaking in physical systems leads to salient phenomena at all scales, from the Higgs mechanism and the emergence of the mass of the elementary particles, to superconductivity and magnetism in solids. The hidden-order state arising below 17.5 K in URu2Si2 is a puzzling example of one of such phase transitions: its associated broken symmetry and gap structure have remained longstanding riddles.

View Article and Find Full Text PDF

Two-dimensional electron gases (2DEGs) at transition-metal oxide (TMO) interfaces, and boundary states in topological insulators, are being intensively investigated. The former system harbors superconductivity, large magneto-resistance, and ferromagnetism. In the latter, honeycomb-lattice geometry plus bulk spin-orbit interactions lead to topologically protected spin-polarized bands.

View Article and Find Full Text PDF

We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Γ, Z, and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature hidden-order (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands related to the Kondo-lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase.

View Article and Find Full Text PDF