Publications by authors named "Bardou F"

Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets.

View Article and Find Full Text PDF

Background: Alcohol-related liver disease (ALD) is one of the main indications for liver transplantation (LT). For 20 years, tacrolimus (Tac) is the cornerstone immunosuppressive drug used after LT and is very efficient for the prevention of rejection. Nevertheless, the major drawback of long-term use of Tac is the risk for developing dose-dependent adverse effects.

View Article and Find Full Text PDF

Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II.

View Article and Find Full Text PDF

Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids.

View Article and Find Full Text PDF

Mycolic acids are essential components of the mycobacterial cell envelope, and their biosynthetic pathway is a well known source of antituberculous drug targets. Among the promising new targets in the pathway, FadD32 is an essential enzyme required for the activation of the long meromycolic chain of mycolic acids and is essential for mycobacterial growth. Following the in-depth biochemical, biophysical, and structural characterization of FadD32, we investigated its putative regulation via post-translational modifications.

View Article and Find Full Text PDF

RNA quality control (RQC) eliminates aberrant RNAs based on their atypical structure, whereas posttranscriptional gene silencing (PTGS) eliminates both aberrant and functional RNAs through the sequence-specific action of short interfering RNAs (siRNAs). The Arabidopsis thaliana mutant smd1b was identified in a genetic screen for PTGS deficiency, revealing the involvement of SmD1, a component of the Smith (Sm) complex, in PTGS. The smd1a and smd1b single mutants are viable, but the smd1a smd1b double mutant is embryo-lethal, indicating that SmD1 function is essential.

View Article and Find Full Text PDF

Mycolate-containing compounds constitute major strategic elements of the protective coat surrounding the tubercle bacillus. We have previously shown that FAAL32-Pks13 polyketide synthase catalyzes the condensation reaction, which produces α-alkyl β-ketoacids, direct precursors of mycolic acids. In contrast to the current biosynthesis model, we show here that Pks13 catalyzes itself the release of the neosynthesized products and demonstrate that this function is carried by its thioesterase-like domain.

View Article and Find Full Text PDF

Alternative splicing (AS) of pre-mRNA represents a major mechanism underlying increased transcriptome and proteome complexity. Here, we show that the nuclear speckle RNA-binding protein (NSR) and the AS competitor long noncoding RNA (or ASCO-lncRNA) constitute an AS regulatory module. AtNSR-GFP translational fusions are expressed in primary and lateral root (LR) meristems.

View Article and Find Full Text PDF

Mycobacteria contain a large variety of fatty acids which are used for the biosynthesis of several complex cell wall lipids that have been implicated in the ability of the organism to resist host defenses. The building blocks for the biosynthesis of all these lipids are provided by a fairly complex set of acyl-CoA carboxylases (ACCases) whose subunit composition and roles within these organisms have not yet been clearly established. Previous biochemical and structural studies provided strong evidences that ACCase 5 from Mycobacterium tuberculosis is formed by the AccA3, AccD5 and AccE5 subunits and that this enzyme complex carboxylates acetyl-CoA and propionyl-CoA with a clear substrate preference for the latest.

View Article and Find Full Text PDF

The legume symbiont Sinorhizobium meliloti expresses a plethora of small noncoding RNAs (sRNAs) whose function is mostly unknown. Here, we have functionally characterized two tandemly encoded S. meliloti Rm1021 sRNAs that are similar in sequence and structure.

View Article and Find Full Text PDF

Eukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates.

View Article and Find Full Text PDF

Plants have remarkable developmental plasticity, and the same genotype can result in different phenotypes depending on environmental variation. Indeed, abiotic stresses or biotic interactions affect organogenesis and post-embryonic growth and significantly affect gene regulation. The large diversity of non-protein-coding RNAs (npcRNAs) and genes containing only short open reading frames that are expressed during plant growth and development, contribute to the regulation of gene expression.

View Article and Find Full Text PDF

The 8-, 9-, 10-, and 11-halo, hydroxy, and methoxy derivatives of the antimycobacterial 3,3-dimethyl-3H-benzofuro[3,2-f][1]benzopyran were synthesized by condensation of the diazonium salts of 2-chloroanilines (13-17) with 1,4-benzoquinone (18), reduction of the intermediate phenylbenzoquinones 19-22 to dihydroxybiphenyls, cyclisation to halo-2-hydroxydibenzofurans 24-27, and construction of the pyran ring by thermal rearrangement of the corresponding dimethylpropargyl ethers 35-38. Palladium catalyzed nucleophilic aromatic substitution permitted conversion of the halo to the corresponding hydroxy derivatives which were methylated to methoxy-3,3-dimethyl-3H-benzofuro[3,2-f][1]benzopyran. All compounds substituted on the A ring were found more potent than the reference compound 1 against Mycobacterium bovis BCG and the virulent strain Mycobacterium tuberculosis H37Rv.

View Article and Find Full Text PDF

The complex responses of eukaryotic cells to external factors are governed by several transcriptional and post-transcriptional processes. Several of them occur in the nucleus and have been linked to the action of non-protein-coding RNAs (or npcRNAs), both long and small npcRNAs, that recently emerged as major regulators of gene expression. Regulatory npcRNAs acting in the nucleus include silencing-related RNAs, intergenic npcRNAs, natural antisense RNAs, and other aberrant RNAs resulting from the interplay between global transcription and RNA processing activities (such as Dicers and RNA-dependent polymerases).

View Article and Find Full Text PDF

Eukaryotic-like Ser/Thr protein kinases (STPKs) are present in many bacterial species, where they control various physiological and virulence processes by enabling microbial adaptation to specific environmental signals. PknJ is the only member of the 11 STPKs identified in Mycobacterium tuberculosis that still awaits characterization. Here we report that PknJ is a functional kinase that forms dimers in vitro, and contains a single transmembrane domain.

View Article and Find Full Text PDF

S-Adenosylmethionine-dependent methyltransferases (AdoMet-MTs) constitute a large family of enzymes specifically transferring a methyl group to a range of biologically active molecules. Mycobacterium tuberculosis produces a set of paralogous AdoMet-MTs responsible for introducing key chemical modifications at defined positions of mycolic acids, which are essential and specific components of the mycobacterial cell envelope. We investigated the inhibition of these mycolic acid methyltransferases (MA-MTs) by structural analogs of the AdoMet cofactor.

View Article and Find Full Text PDF

The last steps of the biosynthesis of mycolic acids, essential and specific lipids of Mycobacterium tuberculosis and related bacteria, are catalyzed by proteins encoded by the fadD32-pks13-accD4 cluster. Here, we produced and purified an active form of the Pks13 polyketide synthase, with a phosphopantetheinyl (P-pant) arm at both positions Ser-55 and Ser-1266 of its two acyl carrier protein (ACP) domains. Combination of liquid chromatography-tandem mass spectrometry of protein tryptic digests and radiolabeling experiments showed that, in vitro, the enzyme specifically loads long-chain 2-carboxyacyl-CoA substrates onto the P-pant arm of its C-terminal ACP domain via the acyltransferase domain.

View Article and Find Full Text PDF

Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M.

View Article and Find Full Text PDF

Mycolic acids are major and specific components of the cell envelope of Mycobacteria that include Mycobacterium tuberculosis, the causative agent of tuberculosis. Their metabolism is the target of the most efficient antitubercular drug currently used in therapy, and the enzymes that are involved in the production of mycolic acids represent important targets for the development of new drugs effective against multidrug-resistant strains. Among these are the S-adenosylmethionine-dependent methyltransferases (SAM-MTs) that catalyze the introduction of key chemical modifications in defined positions of mycolic acids.

View Article and Find Full Text PDF

The time evolution of the fluorescence intensity emitted by well-defined ensembles of green fluorescent proteins has been studied by using a standard confocal microscope. In contrast with previous results obtained in single-molecule experiments, the photobleaching of the ensemble is well described by a model based on Lévy statistics. By assuming the presence of thermally activated barriers, this simple model allows us to obtain information about their height distribution.

View Article and Find Full Text PDF

Mycolic acids are major and specific long-chain fatty acids of the cell envelope of several important human pathogens such as Mycobacterium tuberculosis, M. leprae, and Corynebacterium diphtheriae. Their biosynthesis is essential for mycobacterial growth and represents an attractive target for developing new antituberculous drugs.

View Article and Find Full Text PDF
Large phenotype jumps in biomolecular evolution.

Phys Rev E Stat Nonlin Soft Matter Phys

March 2004

By defining the phenotype of a biopolymer by its active three-dimensional shape, and its genotype by its primary sequence, we propose a model that predicts and characterizes the statistical distribution of a population of biopolymers with a specific phenotype that originated from a given genotypic sequence by a single mutational event. Depending on the ratio g(0) that characterizes the spread of potential energies of the mutated population with respect to temperature, three different statistical regimes have been identified. We suggest that biopolymers found in nature are in a critical regime with g(0) approximately 1-6, corresponding to a broad, but not too broad, phenotypic distribution resembling a truncated Lévy flight.

View Article and Find Full Text PDF

We report the formation of novel mesoscopic two-dimensional bubble structures coexisting with nanometer-scale, two monolayer high, meandering islands of characteristic separation approximately 11 nm on CaF2(111) surfaces exposed to glancing incidence ion beam irradiation (4 degrees, 4.5 keV Ar+). The island and bubble structures can be explained, respectively, by nanoscale stress domain related local self-ordering of a single calcium adlayer on phase-separated F- (fluorine ion) and F-center (color center) terminated mesoscopic domains.

View Article and Find Full Text PDF