J Med Internet Res
October 2024
Background: Question answering (QA) systems for patient-related data can assist both clinicians and patients. They can, for example, assist clinicians in decision-making and enable patients to have a better understanding of their medical history. Substantial amounts of patient data are stored in electronic health records (EHRs), making EHR QA an important research area.
View Article and Find Full Text PDFReinforcement learning (RL) has been applied to various domains in computational chemistry and has found wide-spread success. In this review, we first motivate the application of RL to chemistry and list some broad application domains, for example, molecule generation, geometry optimization, and retrosynthetic pathway search. We set up some of the formalism associated with reinforcement learning that should help the reader translate their chemistry problems into a form where RL can be used to solve them.
View Article and Find Full Text PDFEnumerated threat agent lists have long driven biodefense priorities. The global SARS-CoV-2 pandemic demonstrated the limitations of searching for known threat agents as compared to a more agnostic approach. Recent technological advances are enabling agent-agnostic biodefense, especially through the integration of multi-modal observations of host-pathogen interactions directed by a human immunological model.
View Article and Find Full Text PDFMolecular assembly processes are generally driven by thermodynamic properties in solutions. Atomistic modeling can be very helpful in designing and understanding complex systems, except that bulk solvent is very inefficient to treat explicitly as discrete molecules. In this work, we develop and assess two multiscale solvation models for computing solvation thermodynamic properties.
View Article and Find Full Text PDFWe present a highly parallel algorithm to convert internal coordinates of a polymeric molecule into Cartesian coordinates. Traditionally, converting the structures of polymers (e.g.
View Article and Find Full Text PDFWe present a multiresolution approach to compressing the degrees of freedom and potentials associated with molecular dynamics, such as the bond potentials. The approach suggests a systematic way to accelerate large-scale molecular simulations with more than two levels of coarse graining, particularly applications of polymeric materials. In particular, we derive explicit models for (arbitrarily large) linear (homo)polymers and iterative methods to compute large-scale wavelet decompositions from fragment solutions.
View Article and Find Full Text PDFCrystal structures of adenylate kinase (AdK) from Escherichia coli capture two states: an "open" conformation (apo) obtained in the absence of ligands and a "closed" conformation in which ligands are bound. Other AdK crystal structures suggest intermediate conformations that may lie on the transition pathway between these two states. To characterize the transition from open to closed states in solution, X-ray solution scattering data were collected from AdK in the apo form and with progressively increasing concentrations of five different ligands.
View Article and Find Full Text PDFTailgut duplication cyst (retro-rectal cystic hamartoma) is a rare congenital developmental lesion arising from post-natal primitive gut remnants. Tailgut cysts are found more commonly in middle-aged females. It may be asymptomatic or symptomatic in complicated cases.
View Article and Find Full Text PDFWe extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface.
View Article and Find Full Text PDFCongenital malformations of the liver are rare occurrences. We are reporting a case of malrotation of the liver. The patient was asymptomatic and had undergone a non-contrast CT scan of the upper abdomen, which showed malrotation of the liver.
View Article and Find Full Text PDFIn this paper, we describe a model for maximum likelihood estimation (MLE) of the relative abundances of different conformations of a protein in a heterogeneous mixture from small angle X-ray scattering (SAXS) intensities. To consider cases where the solution includes intermediate or unknown conformations, we develop a subset selection method based on k-means clustering and the Cramér-Rao bound on the mixture coefficient estimation error to find a sparse basis set that represents the space spanned by the measured SAXS intensities of the known conformations of a protein. Then, using the selected basis set and the assumptions on the model for the intensity measurements, we show that the MLE model can be expressed as a constrained convex optimization problem.
View Article and Find Full Text PDFIn this paper, we present an exact, infinite-series solution to Lorentz nonlocal continuum electrostatics for an arbitrary charge distribution in a spherical solute. Our approach relies on two key steps: (1) re-formulating the PDE problem using boundary-integral equations, and (2) diagonalizing the boundary-integral operators using the fact that their eigenfunctions are the surface spherical harmonics. To introduce this uncommon approach for calculations in separable geometries, we first re-derive Kirkwood's classic results for a protein surrounded concentrically by a pure-water ion-exclusion (Stern) layer and then a dilute electrolyte, which is modeled with the linearized Poisson-Boltzmann equation.
View Article and Find Full Text PDFIndian J Physiol Pharmacol
August 2015
Cerebrovascular accident or stroke is defined by an abrupt onset of neurological deficit that is attributable to a focal vascular cause. Stroke is a major cause of morbidity and mortality worldwide. This may result from brain infarction or hemorrhage.
View Article and Find Full Text PDFJ Mech Behav Mater
December 2013
In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g.
View Article and Find Full Text PDFWe show that charge-sign-dependent asymmetric hydration can be modeled accurately using linear Poisson theory after replacing the standard electric-displacement boundary condition with a simple nonlinear boundary condition. Using a single multiplicative scaling factor to determine atomic radii from molecular dynamics Lennard-Jones parameters, the new model accurately reproduces MD free-energy calculations of hydration asymmetries for: (i) monatomic ions, (ii) titratable amino acids in both their protonated and unprotonated states, and (iii) the Mobley "bracelet" and "rod" test problems [D. L.
View Article and Find Full Text PDFThe continuum theory applied to biomolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown.
View Article and Find Full Text PDFWe analyze and suggest improvements to a recently developed approximate continuum-electrostatic model for proteins. The model, called BIBEE/I (boundary-integral based electrostatics estimation with interpolation), was able to estimate electrostatic solvation free energies to within a mean unsigned error of 4% on a test set of more than 600 proteins-a significant improvement over previous BIBEE models. In this work, we tested the BIBEE/I model for its capability to predict residue-by-residue interactions in protein-protein binding, using the widely studied model system of trypsin and bovine pancreatic trypsin inhibitor (BPTI).
View Article and Find Full Text PDFTwo mechanisms have been proposed to drive asymmetric solvent response to a solute charge: a static potential contribution similar to the liquid-vapor potential, and a steric contribution associated with a water molecule's structure and charge distribution. In this work, we use free-energy perturbation molecular-dynamics calculations in explicit water to show that these mechanisms act in complementary regimes; the large static potential (∼44 kJ/mol/e) dominates asymmetric response for deeply buried charges, and the steric contribution dominates for charges near the solute-solvent interface. Therefore, both mechanisms must be included in order to fully account for asymmetric solvation in general.
View Article and Find Full Text PDFQual Manag Health Care
February 2013
Background: Presenting and discharge diagnoses of hospitalized patients may differ as a result of patient complexity, diagnostic dilemmas, or errors in clinical judgment at the time of primary assessment. When diagnoses at admission and discharge are not in agreement, this discrepancy may indicate more complex processes of care and resultant costs. It is unclear whether surrogate measures reflecting quality of care are impacted by discrepant diagnoses.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2012
Particle-based simulation represents a powerful approach to modeling physical systems in electronics, molecular biology, and chemical physics. Accounting for the interactions occurring among charged particles requires an accurate and efficient solution of Poisson's equation. For a system of discrete charges with inhomogeneous dielectrics, i.
View Article and Find Full Text PDFBackground: : Thirty-day readmissions have become a focal point for reducing health care spending, because they are viewed as a marker of the quality of hospital care. However, if increased time in the hospital is associated with better care, attempts to shorten length of stay (LOS) may result in increased rates of readmission. As such, we sought to explore the association of an incremental added day in LOS with the rate of readmission.
View Article and Find Full Text PDFProteins are dynamic molecules whose function in virtually all biological processes requires conformational motion. Direct experimental probes of protein structure in solution are needed to characterize these motions. Anomalous scattering from proteins in solution has the potential to act as a precise molecular ruler to determine the positions of specific chemical groups or atoms within proteins under conditions in which structural changes can take place free from the constraints of crystal contacts.
View Article and Find Full Text PDFWe analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution).
View Article and Find Full Text PDF