Front Biosci (Landmark Ed)
March 2019
Glutamate carboxypeptidases II and III (GCPII and GCPIII) are highly homologous di-zinc metallopeptidases belonging to the M28 family. These enzymes are expressed in a variety of tissues, including the brain, prostate, kidney, testis and jejunum. GCPII has been recognized as a neuropeptidase in the central nervous system, as a folate hydrolase participating in absorption of folates in the jejunum and, most importantly, as a prostate-specific membrane antigen that is highly expressed in prostate adenocarcinoma.
View Article and Find Full Text PDFBackground: Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is an important diagnostic and therapeutic target in prostate cancer. PSMA/GCPII is also expressed in many healthy tissues, but its function has only been established in the brain and small intestine. Several research groups have attempted to produce PSMA/GCPII-deficient mice to study the physiological role of PSMA/GCPII in detail.
View Article and Find Full Text PDFGlutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA) or folate hydrolase, is a metallopeptidase expressed predominantly in the human brain and prostate. GCPII expression is considerably increased in prostate carcinoma, and the enzyme also participates in glutamate excitotoxicity in the brain. Therefore, GCPII represents an important diagnostic marker of prostate cancer progression and a putative target for the treatment of both prostate cancer and neuronal disorders associated with glutamate excitotoxicity.
View Article and Find Full Text PDFOveractivation of NMDA receptors has been implicated in various neuropathological conditions, including brain ischaemia, neurodegenerative disorders and epilepsy. Production of d-serine, an NMDA receptor co-agonist, from l-serine is catalyzed in vivo by the pyridoxal-5'-phosphate (PLP)-dependent enzyme serine racemase. Specific inhibition of this enzyme has been proposed as a promising strategy for treatment of neurological conditions caused by NMDA receptor dysfunction.
View Article and Find Full Text PDFProteins of glutamatergic NMDA receptor signaling pathways have been studied as targets for intervention in a variety of neuropathological conditions, including neurodegenerations, epilepsy, neuropathic pain, drug addiction, and schizophrenia. High activity NMDA-blocking agents have been designed to treat some of these disorders; however, their effect is often compromised by undesirable side effects. Therefore, alternative ways of modulating NMDA receptor function need to be sought after.
View Article and Find Full Text PDF