A simple and low-cost method of monitoring and collecting particulate matter detaching from (or interacting with) aquatic animals is described using a novel device based on an airlift pump principle applied to floating cages. The efficiency of the technique in particle collection is demonstrated using polyethylene microspheres interacting with a cyprinid fish () and a temporarily parasitic stage (glochidia) of an endangered freshwater mussel () dropping from experimentally infested host fish (). The technique enables the monitoring of temporal dynamics of particle detachment and their continuous collection both in the laboratory and , allowing the experimental animals to be kept under natural water quality regimes and reducing the need for handling and transport.
View Article and Find Full Text PDFInterspecific relationships frequently determine the effect a pollutant can have on an organism, and this is especially true in closely interacting species such as hosts and parasites. The high spatial and temporal variability of contaminant concentrations combined with the movement of aquatic biota can further influence the consequences that are associated with contamination. We used a full factorial design for the exposed and unexposed partners of the relationship between the parasitic larvae (glochidia) of the European freshwater mussel (Anodonta anatina) and its host fish (Squalius cephalus) to identify the sources of variation in the sublethal endpoints of species interaction (the intensity of parasite attachment, the spatial position of glochidia on the host body, and encapsulation success).
View Article and Find Full Text PDFGlycogen is a primary metabolic reserve in bivalves and can be suitable for the evaluation of bivalve condition and health status, but the use of glycogen as a diagnostic tool in aquaculture and biomonitoring is still relatively rare. A tissue biopsy combined with a simplified phenol-sulfuric acid method was used in this study to evaluate the inter- and intraindividual variation in the glycogen concentrations among several tissues (foot, mantle, gills, adductor muscle) of the unionid bivalve, the duck mussel Anodonta anatina. This short report documents that individual bivalves differ in the spatial distribution of glycogen among tissues.
View Article and Find Full Text PDF