Publications by authors named "Barbora Vitovcova"

: Although several prognostic factors for survival have been identified in glioblastoma, there are numerous other potential markers (such as hemoglobin) whose role has not yet been confirmed. The aim of this study was to evaluate a wide range of potential prognostic factors, including HIF-1α and hemoglobin levels, for survival in glioblastoma. A secondary aim was to determine whether hemoglobin levels were associated with HIF-1α expression.

View Article and Find Full Text PDF

Background: Glioblastoma is a malignant and aggressive type of central nevous system malignancy characterized by many distinct biological features including extensive hypoxia. Hypoxia in glioblatoma associates with complex signaling patterns including activation of several pathways such as MAPK, PI3K-AKT/mTOR and IL-6/JAK/STAT3 with the master regulator HIF-1, which in turn drive particular tumor behaviors determining, in the end, treatment outcomes and patients fate. Thus, the present study was designed to investigate the expression of selected hypoxia related factors including STAT3 in a small set of long-term surviving glioma patients.

View Article and Find Full Text PDF

Histological identification of dispersed glioma cells in small biopsies can be challenging, especially in tumours lacking the R132H mutation or alterations in TP53. We postulated that immunohistochemical detection of proteins expressed preferentially in gliomas (EGFR, MEOX2, CD34) or during embryonal development (SOX11, INSM1) can be used to distinguish reactive gliosis from glioma. Tissue microarrays of 46 reactive glioses, 81 glioblastomas, 34 IDH1-mutant diffuse gliomas, and 23 gliomas of other types were analysed.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) belongs to most aggressive and invasive primary brain tumor in adults whose prognosis and survival remains poor. Potential new treatment modalities include targeting the cytoskeleton. In our study, we demonstrated that repurposed drug flubendazole (FLU) significantly inhibits proliferation and survival of GBM cells.

View Article and Find Full Text PDF

Cauda equina neuroendocrine tumors (CENETs) are neoplasms of uncertain histogenesis with overlapping features between those of paragangliomas (PGs) and visceral neuroendocrine tumors (NETs). We have explored their biological relationship to both subsets of neuroendocrine neoplasms. The clinical and radiological features of a cohort of 23 CENETs were analyzed.

View Article and Find Full Text PDF

(1) Background: N-cadherin expression, epithelial-to-mesenchymal transition (EMT) and aggressive biological phenotype of tumor cells are linked although the underlying mechanisms are not entirely clear. (2) Methods: In this study, we used two different in vitro cell models with varying N-cadherin expression (stabilized lines and primocultures) and investigated their select biological features including the degree of their chemoresistance both in vitro as well as in vivo. (3) Results: We report that although enforced N-cadherin expression changes select morphological and behavioral characteristics of exposed cells, it fails to successfully reprogram cells to the aggressive, chemoresistant phenotype both in vitro as well as in vivo as verified by implantation of those cells into athymic mice.

View Article and Find Full Text PDF

Pitx2 is a transcription factor responsible for establishment of the right-left axis and development of the gut and pituitary. In mouse embryos, Pitx2 is expressed in the greater curvature of the stomach and midgut. Previously, Pitx2 was studied in pituitary neuroendocrine tumours but not in other NETs.

View Article and Find Full Text PDF

Aims: In somatotroph pituitary neuroendocrine tumours (adenomas), a pattern of cytokeratin (CK) 18 expression is used for tumour subclassification, with possible clinical implications. Rare somatotroph tumours do not express CK 18. We aimed to characterise this subset clinically and histologically.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) represents approximately 60% of all brain tumors in adults. This malignancy shows a high biological and genetic heterogeneity associated with exceptional aggressiveness, leading to a poor survival of patients. This review provides a summary of the basic biology of GBM cells with emphasis on cell cycle and cytoskeletal apparatus of these cells, in particular microtubules.

View Article and Find Full Text PDF

Purpose: Primary cell lines are a valuable tool for evaluation of tumor behavior or sensitivity to anticancer treatment and appropriate dissociation of cells could preserve genomic profile of the original tissue. The main aim of our study was to compare the influence of two methods of glioblastoma multiforme (GBM) cell derivation (mechanic-MD; enzymatic-ED) on basic biological properties of thus derived cells and correlate them to the ones obtained from stabilized GBM cell line A-172.

Methods: Cell proliferation and migration (xCELLigence Real-Time Cell Analysis), expression of microRNAs and protein markers (RT-PCR and Western blotting), morphology (phase contrast and fluorescent microscopy), and accumulation of temozolomide (TMZ) and its metabolite 5-aminoimidazole-4-carboxamide (AIC) inside the cells (LC-MS analysis) were carried out in five different samples of GBM (GBM1, GBM2, GBM32, GBM33, GBM34), with each of them processed by MD and ED types of isolations.

View Article and Find Full Text PDF

Chemoresistance has been found in all malignant tumors including colorectal carcinoma (CRC). Nowadays chemoresistance is understood as a major reason for therapy failure, with consequent tumor growth and spreading leading ultimately to the patient's premature death. The chemotherapy-related resistance of malignant colonocytes may be manifested in diverse mechanisms that may exist both prior to the onset of the therapy or after it.

View Article and Find Full Text PDF