Dietary nitrate (NO) supplementation has been shown to reduce blood pressure (BP), improve exercise performance, and alter the oral microbiome. Following a "control" diet (CON), we manipulated dietary NO intake to examine the effect of a short-term (7-day) low NO diet (LOW) followed by a 3-day high NO diet (HIGH), compared to a 7-day standard (STD) NO diet followed by HIGH, on saliva, plasma, and muscle [NO] and nitrite ([NO]), BP, and cycling exercise performance in healthy young adults. We also examined the effect of LOW on the oral microbiome.
View Article and Find Full Text PDFIn mammals, nitric oxide (NO) is generated either by the nitric oxide synthase (NOS) enzymes from arginine or by the reduction of nitrate to nitrite by tissue xanthine oxidoreductase (XOR) and the microbiome and further reducing nitrite to NO by XOR or several heme proteins. Previously, we reported that skeletal muscle acts as a large nitrate reservoir in mammals, and this nitrate reservoir is systemically, as well as locally, used to generate nitrite and NO. Here, we report identifying two additional nitrate storage organs-bone and skin.
View Article and Find Full Text PDFNitrate (NO) obtained from the diet is converted to nitrite (NO) and subsequently to nitric oxide (NO) within the body. Previously, we showed that porcine eye components contain substantial amounts of nitrate and nitrite that are similar to those in blood. Notably, cornea and sclera exhibited the capability to reduce nitrate to nitrite.
View Article and Find Full Text PDFNitric oxide (NO) (co)regulates many physiological processes in the body. Its short-lived free radicals force synthesis in situ and on-demand, without storage possibility. Local oxygen availability determines the origin of NO-either by synthesis by nitric oxide synthases (NOS) or by the reduction of nitrate to nitrite to NO by nitrate/nitrite reductases.
View Article and Find Full Text PDFThe reduction pathway of nitrate (NO) and nitrite (NO) to nitric oxide (NO) contributes to regulating many physiological processes. To examine the rate and extent of dietary nitrate absorption and its reduction to nitrite, we supplemented rat diets with NaNO-containing water (1 g/L) and collected plasma, urine and several tissue samples. We found that plasma and urine showed 8.
View Article and Find Full Text PDFAim: Dietary nitrate (NO ) supplementation increases nitric oxide bioavailability and can enhance exercise performance. We investigated the distribution and metabolic fate of ingested NO at rest and during exercise with a focus on skeletal muscle.
Methods: In a randomized, crossover study, 10 healthy volunteers consumed 12.
Introduction: Dietary inorganic nitrate is a popular nutritional supplement, which increases nitric oxide bioavailability and may improve exercise performance. Despite over a decade of research into the effects of dietary nitrate supplementation during exercise there is currently no expert consensus on how, when and for whom this compound could be recommended as an ergogenic aid. Moreover, there is no consensus on the safe administration of dietary nitrate as an ergogenic aid.
View Article and Find Full Text PDFDietary nitrate (NO) ingestion can be beneficial for health and exercise performance. Recently, based on animal and limited human studies, a skeletal muscle NO reservoir has been suggested to be important in whole body nitric oxide (NO) homeostasis. The purpose of this study was to determine the time course of changes in human skeletal muscle NO concentration ([NO]) following the ingestion of dietary NO.
View Article and Find Full Text PDFExerc Sport Sci Rev
January 2022
Nonenzymatic nitric oxide (NO) generation via the reduction of nitrate and nitrite ions, along with remarkably high levels of nitrate ions in skeletal muscle, have been described recently. Skeletal muscle nitrate storage may be critical for maintenance of NO homeostasis in healthy aging, and nitrate supplementation may be useful for the treatment of specific pathophysiologies and for enhancing normal functions.
View Article and Find Full Text PDFNitrate ions (NO3) were once thought to be inert end products of nitric oxide (NO) metabolism. However, previous studies demonstrated that nitrate ions can be converted back to NO in mammals through a two-step reduction mechanism: nitrate being reduced to nitrite (NO2) mostly by oral commensal bacteria, then nitrite being reduced to NO by several mechanisms including via heme- or molybdenum-containing proteins. This reductive nitrate pathway contributes to enhancing NO-mediated signaling pathways, particularly in the cardiovascular system and during muscular exercise.
View Article and Find Full Text PDFThe roles of nitrate and nitrite ions as nitric oxide (NO) sources in mammals, complementing NOS enzymes, have recently been the focus of much research. We previously reported that rat skeletal muscle serves as a nitrate reservoir, with the amount of stored nitrate being highly dependent on dietary nitrate availability, as well as its synthesis by NOS1 enzymes and its subsequent utilization. We showed that at conditions of increased NO need, this nitrate reservoir is used in situ to generate nitrite and NO, at least in part via the nitrate reductase activity of xanthine oxidoreductase (XOR).
View Article and Find Full Text PDFNitric oxide (NO) signaling has been studied in the eye, including in the pathophysiology of some eye diseases. While NO production by nitric oxide synthase (NOS) enzymes in the eye has been characterized, the more recently described pathways of NO generation by nitrate (NO) and nitrite (NO) ions reduction has received much less attention. To elucidate the potential roles of these pathways, we analyzed nitrate and nitrite levels in components of the eye and lacrimal glands, primarily in porcine samples.
View Article and Find Full Text PDFNitric oxide (NO) is a gaseous signaling molecule that plays an important role in myriad physiological processes, including the regulation of vascular tone, neurotransmission, mitochondrial respiration, and skeletal muscle contractile function. NO may be produced via the canonical NO synthase-catalyzed oxidation of l-arginine and also by the sequential reduction of nitrate to nitrite and then NO. The body's nitrate stores can be augmented by the ingestion of nitrate-rich foods (primarily green leafy vegetables).
View Article and Find Full Text PDFSeveral studies show that dietary nitrate enhances exercise performance, presumably by increasing muscle blood flow and improving oxygen utilization. These effects are likely mediated by nitrate metabolites, including nitrite and nitric oxide (NO). However, the mechanisms of nitrate production, storage, and metabolism to nitrite and NO in skeletal muscle cells are still unclear.
View Article and Find Full Text PDFKey Points: Nitric oxide (NO), a potent vasodilator and a regulator of many physiological processes, is produced in mammals both enzymatically and by reduction of nitrite and nitrate ions. We have previously reported that, in rodents, skeletal muscle serves as a nitrate reservoir, with nitrate levels greatly exceeding those in blood or other internal organs, and with nitrate being reduced to NO during exercise. In the current study, we show that nitrate concentration is substantially greater in skeletal muscle than in blood and is elevated further by dietary nitrate ingestion in human volunteers.
View Article and Find Full Text PDFDysfunction in the nitric oxide (NO) signaling pathway can lead to the development of pulmonary hypertension (PH) in mammals. Discovery of an alternative pathway to NO generation involving reduction from nitrate to nitrite and to NO has motivated the evaluation of nitrite as an alternative to inhaled NO for PH. In contrast, inhaled nitrate has not been evaluated to date, and potential benefits include a prolonged half-life and decreased risk of methemoglobinemia.
View Article and Find Full Text PDFThe mechanism for nitric oxide (NO) generation from reduction of nitrate (NO) and nitrite (NO) has gained increasing attention due to the potential beneficial effects of NO in cardiovascular diseases and exercise performance. We have previously shown in rodents that skeletal muscle is the major nitrate reservoir in the body and that exercise enhances the nitrate reduction pathway in the muscle tissue and have proposed that nitrate in muscle originates from diet, the futile cycle of nitric oxide synthase 1 (NOS1) and/or oxidation of NO by oxymyoglobin. In the present study, we tested the hypothesis that lack of myoglobin expression would decrease nitrate levels in skeletal muscle.
View Article and Find Full Text PDFPlatelets are the blood components responsible for proper blood clotting. Their function is highly regulated by various pathways. One of the most potent vasoactive agents, nitric oxide (NO), can also act as a powerful inhibitor of platelet aggregation.
View Article and Find Full Text PDFNitrite is recognized as a bioactive nitric oxide (NO) metabolite. We have shown that nitrite inhibits platelet activation and increases platelet cGMP levels in the presence of partially deoxygenated erythrocytes. In this study, we investigated the effect of nitrite on phosphorylation of vasodilator-stimulated phosphoprotein on residue serine 239 (P-VASPSer239), a marker of protein kinase G (PKG) activation, in human platelets.
View Article and Find Full Text PDFRodent skeletal muscle has high levels of nitrate ions and this endogenous nitrate reservoir can supply nitrite/nitric oxide (NO) for functional hyperemia and/or for other physiological processes in muscle during exercise. Mice with a NOS1 knockout have markedly reduced muscle nitrate levels, suggesting NO production by NOS and its reaction with oxymyoglobin as a source of nitrate. However, oxygen levels are normally low in most internal organs, which raises the possibility that nitrate-derived NO pathway is physiologically important even at "normoxia", and muscle nitrate reservoir is the main endogenous NO backup when exogeneous (dietary) nitrate intake is low.
View Article and Find Full Text PDFNitric oxide (NO) is one of the main regulator molecules in vascular homeostasis and also a neurotransmitter. Enzymatically produced NO is oxidized into nitrite and nitrate by interactions with various oxy-heme proteins and other still not well known pathways. The reverse process, reduction of nitrite and nitrate into NO had been discovered in mammals in the last decade and it is gaining attention as one of the possible pathways to either prevent or ease a whole range of cardiovascular, metabolic and muscular disorders that are thought to be associated with decreased levels of NO.
View Article and Find Full Text PDF