Publications by authors named "Barbora Kalocayova"

Reactive oxygen species (ROS) play a key role in the regulation of adipogenesis. The aim of our study was to investigate the effect of quercetin (QCT) supplement on obese adipose tissue metabolism of 30-week-old diabetic Zucker rats (ZDF), not well examined yet. QCT was administered orally at dose of 20 mg/kg body weight/day for 6 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • The Western diet contributes to oxidative stress and inflammation, increasing the risk of cardiovascular diseases and type 2 diabetes, while the Mediterranean diet, rich in antioxidants, offers protective benefits.
  • The production of molecular hydrogen in the gut, supported by fiber, flavonoids, and probiotics, acts as a powerful antioxidant, potentially reducing inflammation and oxidative stress.
  • Recent studies suggest that both naturally produced and artificially administered molecular hydrogen have therapeutic effects in managing cardiovascular diseases and metabolic disorders, but further research is needed to confirm these findings on a larger scale.
View Article and Find Full Text PDF

microRNAs (miRNAs) represent small RNA molecules involved in the regulation of gene expression. They are implicated in the regulation of diverse cellular processes ranging from cellular homeostasis to stress responses. Unintended irradiation of the cells and tissues, e.

View Article and Find Full Text PDF

Cardiac surgery-associated acute kidney injury is a common post-operative complication, mostly due to increasing oxidative stress. Recently, molecular hydrogen (H gas) has also been applied to cardiac surgery due to its ability to reduce oxidative stress. We evaluated the potential effect of H application on the kidney in an in vivo model of simulated heart transplantation.

View Article and Find Full Text PDF

Necroptosis, a cell death modality that is defined as a necrosis-like cell death depending on the receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL), has been found to underlie the injury of various organs. Nevertheless, the molecular background of this cell loss seems to also involve, at least under certain circumstances, some novel axes, such as RIPK3-PGAM5-Drp1 (mitochondrial protein phosphatase 5-dynamin-related protein 1), RIPK3-CaMKII (Ca/calmodulin-dependent protein kinase II) and RIPK3-JNK-BNIP3 (c-Jun N-terminal kinase-BCL2 Interacting Protein 3). In addition, endoplasmic reticulum stress and oxidative stress via the higher production of reactive oxygen species produced by the mitochondrial enzymes and the enzymes of the plasma membrane have been implicated in necroptosis, thereby depicting an inter-organelle interplay in the mechanisms of this cell death.

View Article and Find Full Text PDF

The study aimed to characterize the consequences of a 15-week intake of 10% fructose on the kidney, with the focus on oxidative stress markers and properties of the Na,K-ATPase enzyme. Various antioxidants naturally occurring in common food were demonstrated to be protective against fructose-induced deterioration of kidneys. Therefore, we also aimed to observe the effect of 6-week quercetin administration (20 mg/kg/day) that was initiated following the 9-week period of higher fructose intake, by determining the concentration of sodium, potassium, creatinine, urea, and glucose in blood plasma and oxidative status directly in the renal tissue.

View Article and Find Full Text PDF

Introduction: Quercetin (Que) is a potent anti-inflammatory and antioxidant flavonoid with cardioprotective potential. However, very little is known about the signaling pathways and gene regulatory proteins Que may interfere with, especially in diabetic cardiomyopathy. Therefore, we aimed to study the potential cardioprotective effects of Que on the cardiac phenotype of type 2 diabetes mellitus (T2DM) accompanied by obesity.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) is a liver pathology affecting around 25% of the population worldwide. Excess oxidative stress, inflammation and aberrant cellular signaling can lead to this hepatic dysfunction and eventual carcinoma. Molecular hydrogen has been recognized for its selective antioxidant properties and ability to attenuate inflammation and regulate cellular function.

View Article and Find Full Text PDF

Despite significant advances in the diagnosis and treatment of cardiovascular diseases, recent calls have emphasized the unmet need to improve precision-based approaches in cardiovascular disease. Although some studies provide preliminary evidence of the diagnostic and prognostic potential of circulating coding and non-coding RNAs, the complex RNA biology and lack of standardization have hampered the translation of these markers into clinical practice. In this position paper of the CardioRNA COST action CA17129, we provide recommendations to standardize the RNA development process in order to catalyse efforts to investigate novel RNAs for clinical use.

View Article and Find Full Text PDF

Catechins represent a group of polyphenols that possesses various beneficial effects in the cardiovascular system, including protective effects in cardiac ischemia-reperfusion (I/R) injury, a major pathophysiology associated with ischemic heart disease, myocardial infarction, as well as with cardioplegic arrest during heart surgery. In particular, catechin, (-)-epicatechin, and epigallocatechin gallate (EGCG) have been reported to prevent cardiac myocytes from I/R-induced cell damage and I/R-associated molecular changes, finally, resulting in improved cell viability, reduced infarct size, and improved recovery of cardiac function after ischemic insult, which has been widely documented in experimental animal studies and cardiac-derived cell lines. Cardioprotective effects of catechins in I/R injury were mediated via multiple molecular mechanisms, including inhibition of apoptosis; activation of cardioprotective pathways, such as PI3K/Akt (RISK) pathway; and inhibition of stress-associated pathways, including JNK/p38-MAPK; preserving mitochondrial function; and/or modulating autophagy.

View Article and Find Full Text PDF

Diabetes mellitus is characterized by tissue oxidative damage and impaired microcirculation, as well as worsened erythrocyte properties. Measurements of erythrocyte deformability together with determination of nitric oxide (NO) production and osmotic resistance were used for the characterization of erythrocyte functionality in lean (control) and obese Zucker diabetic fatty (ZDF) rats of two age categories. Obese ZDF rats correspond to prediabetic (younger) and diabetic (older) animals.

View Article and Find Full Text PDF

Previously it was shown that for reduction of anxiety and stress of experimental animals, preventive handling seems to be one of the most effective methods. The present study was oriented on Na,K-ATPase, a key enzyme for maintaining proper concentrations of intracellular sodium and potassium ions. Malfunction of this enzyme has an essential role in the development of neurodegenerative diseases.

View Article and Find Full Text PDF

Radiation damage of healthy tissues represents one of the complications of radiotherapy effectiveness. This study is focused on the screening of potentially effective drugs routinely used in medical practice and involved in the mechanism of radiation injury, namely for radiation-induced production of free radicals in the body. Experiments in rats revealed significant reduction of oxidative stress (malondialdehyde) and inflammatory marker (tumor necrosis factor α) in 10 Gy irradiated groups after administration of atorvastatin and a slight decrease after tadalafil administration, which indicates that one of the possible mechanisms for mitigation of radiation-induced cardiac damage could be the modulation of nitric oxide (NO) in endothelium and phosphodiesterase 5.

View Article and Find Full Text PDF

Quercetin (QCT) is a natural polyphenolic compound enriched in human food, mainly in vegetables, fruits and berries. QCT and its main derivatives, such as rhamnetin, rutin, hyperoside, etc., have been documented to possess many beneficial effects in the human body including their positive effects in the cardiovascular system.

View Article and Find Full Text PDF

The interest in non-coding RNAs, which started more than a decade ago, has still not weakened. A wealth of experimental and clinical studies has suggested the potential of non-coding RNAs, especially the short-sized microRNAs (miRs), to be used as the new generation of therapeutic targets and biomarkers of cardiovascular disease, an ever-growing public health issue in the modern world. Among the hundreds of miRs characterized so far, microRNA-1 (miR-1) and microRNA-21 (miR-21) have received some attention and have been associated with cardiac injury and cardioprotection.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are important molecules in the living organisms as a part of many signaling pathways. However, if overproduced, they also play a significant role in the development of cardiovascular diseases, such as arrhythmia, cardiomyopathy, ischemia/reperfusion injury (e.g.

View Article and Find Full Text PDF

: Quercetin (QCT) was shown to exert beneficial cardiovascular effects in young healthy animals. The aim of the present study was to determine cardiovascular benefits of QCT in older, 6-month and 1-year-old Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). : Lean (fa/+) and obese (fa/fa) ZDF rats of both ages were treated with QCT for 6 weeks (20 mg/kg/day).

View Article and Find Full Text PDF

Cardiovascular diseases are the most common causes of morbidity and mortality worldwide. Redox dysregulation and a dyshomeostasis of inflammation arise from, and result in, cellular aberrations and pathological conditions, which lead to cardiovascular diseases. Despite years of intensive research, there is still no safe and effective method for their prevention and treatment.

View Article and Find Full Text PDF

microRNAs (miRNAs) constitute a large class of post-transcriptional regulators of gene expression. It has been estimated that miRNAs regulate up to 30% of the protein-coding genes in humans. They are implicated in many physiological and pathological processes, including those involved in radiation-induced heart damage.

View Article and Find Full Text PDF

Na,K-ATPase represents the key enzyme that maintains the homeostasis of sodium and potassium ions in the cells. It was documented that in directly irradiated organs the activity of this enzyme is decreased. The aim of present study was to clarify the remote effect of irradiation in mediastinal area on the activity of the Na,K-ATPase in kidneys in rats.

View Article and Find Full Text PDF

Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors.

View Article and Find Full Text PDF