Publications by authors named "Barberi L"

From cytoskeletal networks to tissues, many biological systems behave as active materials. Their composition and stress generation is affected by chemical reaction networks. In such systems, the coupling between mechanics and chemistry enables self-organization, for example, into waves.

View Article and Find Full Text PDF

Stress generation by the actin cytoskeleton shapes cells and tissues. Despite impressive progress in live imaging and quantitative physical descriptions of cytoskeletal network dynamics, the connection between processes at molecular scales and spatiotemporal patterns at the cellular scale is still unclear. Here, we review studies reporting actomyosin clusters of micrometre size and with lifetimes of several minutes in a large number of organisms, ranging from fission yeast to humans.

View Article and Find Full Text PDF

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated.

View Article and Find Full Text PDF

Biological active matter is typically tightly coupled to chemical reaction networks affecting its assembly-disassembly dynamics and stress generation. We show that localized states can emerge spontaneously if assembly of active matter is regulated by chemical species that are advected with flows resulting from gradients in the active stress. The mechanochemical localized patterns form via a subcritical bifurcation and for parameter values for which patterns do not exist in absence of the advective coupling.

View Article and Find Full Text PDF

Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature.

View Article and Find Full Text PDF

ALS is a fatal neurodegenerative disease that is associated with muscle atrophy, motoneuron degeneration and denervation. Different mechanisms have been proposed to explain the pathogenesis of the disease; in this context, microRNAs have been described as biomarkers and potential pathogenetic factors for ALS. MyomiRs are microRNAs produced by skeletal muscle, and they play an important role in tissue homeostasis; moreover, they can be released in blood circulation in pathological conditions, including ALS.

View Article and Find Full Text PDF

In viruses and cells, DNA is closely packed and tightly curved thanks to polyvalent cations inducing an effective attraction between its negatively charged filaments. Our understanding of this effective attraction remains very incomplete, partly because experimental data is limited to bulk measurements on large samples of mostly uncurved DNA helices. Here we use cryo electron microscopy to shed light on the interaction between highly curved helices.

View Article and Find Full Text PDF

ESCRT-III proteins assemble into ubiquitous membrane-remodeling polymers during many cellular processes. Here we describe the structure of helical membrane tubes that are scaffolded by bundled ESCRT-III filaments. Cryo-ET reveals how the shape of the helical membrane tube arises from the assembly of two distinct bundles of helical filaments that have the same helical path but bind the membrane with different interfaces.

View Article and Find Full Text PDF

The decline in skeletal muscle mass and strength occurring in aging, referred as sarcopenia, is the result of many factors including an imbalance between protein synthesis and degradation, changes in metabolic/hormonal status, and in circulating levels of inflammatory mediators. Thus, factors that increase muscle mass and promote anabolic pathways might be of therapeutic benefit to counteract sarcopenia. Among these, the insulin-like growth factor-1 (IGF-1) has been implicated in many anabolic pathways in skeletal muscle.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disorder, classified into sporadic or familial forms and characterized by motor neurons death, muscle atrophy, weakness, and paralysis. Among the familial cases of ALS, approximately 20% are caused by dominant mutations in the gene coding for superoxide dismutase (SOD1) protein. Of note, mutant SOD1 toxicity is not necessarily limited to the central nervous system.

View Article and Find Full Text PDF

The use of biomaterials as optical components has recently attracted attention because of their ease of functionalization and fabrication, along with their potential use when integrated with biological materials. We present here an observation of the optical properties of a silk-azobenzene material (Azosilk) and demonstrate the operation of an Azosilk/PDMS composite structure that serves as a conformable and switchable optical diffractive structure. Characterization of thermal and isomeric properties of the device, along with its overall performance, is presented in terms of diffractive characteristics and response times.

View Article and Find Full Text PDF

Skeletal muscle myopathy is universal in cirrhotic patients, however, little is known about the main mechanisms involved. The study aims to investigate skeletal muscle morphological, histological, and functional modifications in experimental models of cirrhosis and the principal molecular pathways responsible for skeletal muscle myopathy. Cirrhosis was induced by bile duct ligation (BDL) and carbon tetrachloride (CCl4) administration in mice.

View Article and Find Full Text PDF

Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production.

View Article and Find Full Text PDF

Background: Exercise intolerance is one of the main clinical symptoms of heart failure (HF) and is associated with skeletal muscle wasting due to an imbalance between proteolysis and protein synthesis. In this study, we tested whether aerobic exercise training (AET) would counteract skeletal muscle atrophy by activating IGF-I/Akt/mTOR pathway in HF mice.

Methods: Sympathetic hyperactivity induced HF mice were assigned into 8-week moderate intensity AET.

View Article and Find Full Text PDF

Objective: The purposes of this study was to assess the effect of repeated subcutaneous injections of CO2 on adipose tissue graft survival in immunosuppressed female nude mice. The authors designed an experimental study using volume measures, histopathological analysis and nuclear magnetic resonance of fat graft. The effect of repeated subcutaneous injection of CO2 is not yet investigated

Materials And Methods: Approximately 0.

View Article and Find Full Text PDF

Insulin-like growth factor 1 (IGF-1) is a potent enhancer of tissue regeneration, and its overexpression in muscle injury leads to hastened resolution of the inflammatory phase. Here, we show that monocytes/macrophages constitute an important initial source of IGF-1 in muscle injury, as conditional deletion of the IGF-1 gene specifically in mouse myeloid cells (ϕIGF-1 CKO) blocked the normal surge of local IGF-1 in damaged muscle and significantly compromised regeneration. In injured muscle, Ly6C+ monocytes/macrophages and CD206+ macrophages expressed equivalent IGF-1 levels, which were transiently upregulated during transition from the inflammation to repair.

View Article and Find Full Text PDF

Muscle regeneration involves the activation of satellite cells, is regulated at the genetic and epigenetic levels, and is strongly influenced by gene activation and environmental conditions. The aim of this study was to determine whether the overexpression of mIGF-1 can modify functional features of satellite cells during the differentiation process, particularly in relation to modifications of intracellular Ca2+ handling. Satellite cells were isolated from wild-type and MLC/mIGF-1 transgenic mice.

View Article and Find Full Text PDF

Background: After a review of clinical cases of the Unit of Plastic Surgery of the University of Siena, Italy, we found that 22 patients undergoing lipofilling for breast recontruction needed less pain drugs compared to 18 patients which did not undergo lipofilling. In this work, the postoperative pain was analyzed in two groups of patients: a cohort treated with prosthesis and a cohort treated with prosthesis implant together with a lipofilling procedure.

Patients And Methods: During the immediate postoperative period, a visual analog scale for pain was submitted to every patient every eight hours until they were discharged, then every day for a week, every two days during the second week and once a week in the first three months.

View Article and Find Full Text PDF

The loss in muscle mass coupled with a decrease in specific force and shift in fiber composition are hallmarks of aging. Training and regular exercise attenuate the signs of sarcopenia. However, pathologic conditions limit the ability to perform physical exercise.

View Article and Find Full Text PDF

IL-6 is a multifaceted pleiotropic cytokine, which is produced by a variety of cell types and targets different cells and tissues. In physiological conditions, IL-6 can be locally and transiently produced by skeletal muscle and plays an important role in muscle homeostasis. Circulating IL-6 levels are normally very low or undetectable but are dramatically increased in several pathologic conditions.

View Article and Find Full Text PDF

Aging is usually accompanied by a significant reduction in muscle mass and force. To determine the relative contribution of inactivity and aging per se to this decay, we compared muscle function and structure in (a) male participants belonging to a group of well-trained seniors (average of 70 years) who exercised regularly in their previous 30 years and (b) age-matched healthy sedentary seniors with (c) active young men (average of 27 years). The results collected show that relative to their sedentary cohorts, muscle from senior sportsmen have: (a) greater maximal isometric force and function, (b) better preserved fiber morphology and ultrastructure of intracellular organelles involved in Ca(2+) handling and ATP production, (c) preserved muscle fibers size resulting from fiber rescue by reinnervation, and (d) lowered expression of genes related to autophagy and reactive oxygen species detoxification.

View Article and Find Full Text PDF

Human aging is associated with a progressive loss of muscle mass and strength and a concomitant fat accumulation in form of inter-muscular adipose tissue, causing skeletal muscle function decline and immobilization. Fat accumulation can also occur as intra-muscular triglycerides (IMTG) deposition in lipid droplets, which are associated with perilipin proteins, such as Perilipin2 (Plin2). It is not known whether Plin2 expression changes with age and if this has consequences on muscle mass and strength.

View Article and Find Full Text PDF

During ageing skeletal muscles undergo a process of structural and functional remodelling that leads to sarcopenia, a syndrome characterized by loss of muscle mass and force and a major cause of physical frailty. To determine the causes of sarcopenia and identify potential targets for interventions aimed at mitigating ageing-dependent muscle wasting, we focussed on the main signalling pathway known to control protein turnover in skeletal muscle, consisting of the insulin-like growth factor 1 (IGF1), the kinase Akt and its downstream effectors, the mammalian target of rapamycin (mTOR) and the transcription factor FoxO. Expression analyses at the transcript and protein level, carried out on well-characterized cohorts of young, old sedentary and old active individuals and on mice aged 200, 500 and 800 days, revealed only modest age-related differences in this pathway.

View Article and Find Full Text PDF

Although adult skeletal muscle is composed of fully differentiated fibers, it retains the capacity to regenerate in response to injury and to modify its contractile and metabolic properties in response to changing demands. The major role in the growth, remodeling and regeneration is played by satellite cells, a quiescent population of myogenic precursor cells that reside between the basal lamina and plasmalemma and that are rapidly activated in response to appropriate stimuli. However, in pathologic conditions or during aging, the complete regenerative program can be precluded by fibrotic tissue formation and resulting in functional impairment of the skeletal muscle.

View Article and Find Full Text PDF