Publications by authors named "Barbay S"

Background: Hematopoietic stem cells (HSC) are recruited to ischemic areas in the brain and contribute to improved functional outcome in animals. However, little is known regarding the mechanisms of improvement following HSC administration post cerebral ischemia. To better understand how HSC effect post-stroke improvement, we examined the effect of HSC in ameliorating motor impairment and cortical dysfunction following cerebral ischemia.

View Article and Find Full Text PDF

Background: Some epidemiologic studies associate traumatic brain injury (TBI) with Alzheimer's disease (AD).

Objective: To test whether a TBI-induced acceleration of age-related mitochondrial change could potentially mediate the reported TBI-AD association.

Methods: We administered unilateral controlled cortical impact (CCI) or sham injuries to 5-month-old C57BL/6J and tau transgenic rTg4510 mice.

View Article and Find Full Text PDF

The rostral forelimb area (RFA) in the rat is a premotor cortical region based on its dense efferent projections to primary motor cortex. This study describes corticocortical connections of RFA and the relative strength of connections with other cortical areas. The goal was to provide a better understanding of the cortical network in which RFA participates, and thus, determine its function in sensorimotor behavior.

View Article and Find Full Text PDF

Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation.

View Article and Find Full Text PDF

Classification and recognition tasks performed on photonic hardware-based neural networks often require at least one offline computational step, such as in the increasingly popular reservoir computing paradigm. Removing this offline step can significantly improve the response time and energy efficiency of such systems. We present numerical simulations of different algorithms that utilize ultrafast photonic spiking neurons as receptive fields to allow for image recognition without an offline computing step.

View Article and Find Full Text PDF

The forecasting of high-dimensional, spatiotemporal nonlinear systems has made tremendous progress with the advent of model-free machine learning techniques. However, in real systems it is not always possible to have all the information needed; only partial information is available for learning and forecasting. This can be due to insufficient temporal or spatial samplings, to inaccessible variables, or to noisy training data.

View Article and Find Full Text PDF

Excitability, encountered in numerous fields from biology to neurosciences and optics, is a general phenomenon characterized by an all-or-none response of a system to an external perturbation of a given strength. When subject to delayed feedback, excitable systems can sustain multistable pulsing regimes, which are either regular or irregular time sequences of pulses reappearing every delay time. Here, we investigate an excitable microlaser subject to delayed optical feedback and study the emergence of complex pulsing dynamics, including periodic, quasiperiodic, and irregular pulsing regimes.

View Article and Find Full Text PDF

Recovery of motor function after stroke is accompanied by reorganization of movement representations in spared cortical motor regions. It is widely assumed that map reorganization parallels recovery, suggesting a causal relationship. We examined this assumption by measuring changes in motor representations in eight male and six female squirrel monkeys in the first few weeks after injury, a time when motor recovery is most rapid.

View Article and Find Full Text PDF

Background: Cortical electrical stimulation is a versatile technique for examining the structure and function of cortical regions and for implementing novel therapies. While electrical stimulation has been used to examine the local spread of neural activity, it may also enable longitudinal examination of mesoscale interregional connectivity.

New Method: Here, we sought to use intracortical microstimulation (ICMS) in conjunction with recordings of multi-unit action potentials to assess the mesoscale effective connectivity within sensorimotor cortex.

View Article and Find Full Text PDF

Chaos enables the emergence of randomness in deterministic physical systems. Therefore it can be exploited for the conception of true random number generators mandatory in classical cryptography applications. Meanwhile, nanomechanical oscillators, at the core of many on-board functionalities such as sensing, reveal as excellent candidates to behave chaotically.

View Article and Find Full Text PDF

Background: Physical use of the affected upper extremity can have a beneficial effect on motor recovery in people after stroke. Few studies have examined neurological mechanisms underlying the effects of forced use in non-human primates. In particular, the ventral premotor cortex (PMV) has been previously implicated in recovery after injury.

View Article and Find Full Text PDF

The investigation of neuronal activity in non-human primate models is of critical importance due to their genetic similarity to human brains. In this study, we tested the feasibility of using photoacoustic imaging for the detection of cortical and subcortical responses due to peripheral electrical stimulation in a squirrel monkey model. Photoacoustic computed tomography and photoacoustic microscopy were applied on squirrel monkeys for real-time deep subcortical imaging and optical-resolution cortical imaging, respectively.

View Article and Find Full Text PDF

Vibrational resonance is a generic phenomenon found in many different bistable systems whereby a weak low-frequency signal is amplified by use of an additional nonresonant high-frequency modulation. The realization of weak signal enhancement in integrated nonlinear optical nanocavities is of great interest for nanophotonic applications where optical signals may be of low power. Here, we report experimental observation of vibrational resonance in a thermo-optically bistable photonic crystal optomechanical resonator with an amplification up to +16 dB.

View Article and Find Full Text PDF

Background: Technological advances in developing experimentally controlled models of traumatic brain injury (TBI) are prevalent in rodent models and these models have proven invaluable in characterizing temporal changes in brain and behavior after trauma. To date no long-term studies in non-human primates (NHPs) have been published using an experimentally controlled impact device to follow behavioral performance over time.

New Method: We have employed a controlled cortical impact (CCI) device to create a focal contusion to the hand area in primary motor cortex (M1) of three New World monkeys to characterize changes in reach and grasp function assessed for 3 months after the injury.

View Article and Find Full Text PDF

Excitable systems with delayed feedback are important in areas from biology to neuroscience and optics. They sustain multistable pulsing regimes with different numbers of equidistant pulses in the feedback loop. Experimentally and theoretically, we report on the pulse-timing symmetry breaking of these regimes in an optical system.

View Article and Find Full Text PDF

Decompressive craniectomy (DC) is often required to manage rising intracranial pressure after traumatic brain injury (TBI). Syndrome of the trephine (SoT) is a reversible neurologic condition that often occurs following DC as a result of the unrepaired skull. The purpose of the present study is to characterize neurological impairment following TBI in rats with an unrepaired craniectomy versus rats with a closed cranium.

View Article and Find Full Text PDF

Background: Syndrome of the trephined is a neurologic condition that commonly arises in patients who undergo craniectomy and have a prolonged cranial defect. Symptoms of this condition include headache, difficulties concentrating, diminished fine motor/dexterity skills, mood changes, and anxiety/apprehension. The authors hypothesize that an animal model demonstrating anxiety/apprehension in rats who undergo craniectomy is feasible utilizing standardized animal behavioral testing.

View Article and Find Full Text PDF

Nonlinear pulse propagation is a major feature in continuously extended excitable systems. The persistence of this phenomenon in coupled excitable systems is expected. Here, we investigate theoretically the propagation of nonlinear pulses in a 1D array of evanescently coupled excitable semiconductor lasers.

View Article and Find Full Text PDF

Driven non-linear resonators can display sharp resonances or even multistable behaviours amenable to induce strong enhancements of weak signals. Such enhancements can make use of the phenomenon of vibrational resonance, whereby a weak low-frequency signal applied to a bistable resonator can be amplified by driving the non-linear oscillator with another appropriately-adjusted non-resonant high-frequency field. Here we demonstrate experimentally and theoretically a significant resonant enhancement of a weak signal by use of a vibrational force, yet in a monostable system consisting of a driven nano-electromechanical nonlinear resonator.

View Article and Find Full Text PDF

Out-of-equilibrium systems exhibit complex spatiotemporal behaviors when they present a secondary bifurcation to an oscillatory instability. Here, we investigate the complex dynamics shown by a pulsing regime in an extended, one-dimensional semiconductor microcavity laser whose cavity is composed by integrated gain and saturable absorber media. This system is known to give rise experimentally and theoretically to extreme events characterized by rare and high amplitude optical pulses following the onset of spatiotemporal chaos.

View Article and Find Full Text PDF

Excitable lasers with saturable absorbers are currently investigated as potential candidates for low level spike processing tasks in integrated optical platforms. Following a small perturbation of a stable equilibrium, a single and intense laser pulse can be generated before returning to rest. Motivated by recent experiments [Selmi et al.

View Article and Find Full Text PDF

We report experimental and theoretical results on the pulse train dynamics in an excitable semiconductor microcavity laser with an integrated saturable absorber and delayed optical feedback. We show how short optical control pulses can trigger, erase, or retime regenerative pulse trains in the external cavity. Both repulsive and attractive interactions between pulses are observed, and are explained in terms of the internal dynamics of the carriers.

View Article and Find Full Text PDF

This paper reports on a fully miniaturized brain-spinal interface (BSI) system for closed-loop cortically-controlled intraspinal microstimulation (ISMS). Fabricated in AMS 0.35μm two-poly four-metal complementary metal-oxide-semiconductor (CMOS) technology, this system-on-chip (SoC) measures ~ 3.

View Article and Find Full Text PDF

Stochastic resonance is a general phenomenon usually observed in one-dimensional, amplitude modulated, bistable systems. We show experimentally the emergence of phase stochastic resonance in the bidimensional response of a forced nanoelectromechanical membrane by evidencing the enhancement of a weak phase modulated signal thanks to the addition of phase noise. Based on a general forced Duffing oscillator model, we demonstrate experimentally and theoretically that phase noise acts multiplicatively, inducing important physical consequences.

View Article and Find Full Text PDF

We experimentally demonstrate strong coupling between self-assembled PTCDI-C7 organic molecules and the electromagnetic mode generated by surface plasmon polaritons (SPPs). The system consists of a dense self-assembly of ordered molecules evaporated directly on a thin gold film, which stack perpendicularly to the metal surface to form H-aggregates, without a host matrix. Experimental wavevector-resolved reflectance spectra show the formation of hybrid states that display a clear anticrossing, attesting the strong coupling regime with a Rabi splitting energy of Ω ≃ 102 meV at room temperature.

View Article and Find Full Text PDF