Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity.
View Article and Find Full Text PDFDiffuse intrinsic pontine gliomas (DIPGs) account for ~15% of pediatric brain tumors, which invariably present with poor survival regardless of treatment mode. Several seminal studies have revealed that 80% of DIPGs harbor H3K27M mutation coded by , and genes. The H3K27M mutation has broad effects on gene expression and is considered a tumor driver.
View Article and Find Full Text PDFMalignant gliomas are heterogeneous neoplasms. Glioma stem-like cells (GSCs) are undifferentiated and self-renewing cells that develop and maintain these tumors. These cells are the main population that resist current therapies.
View Article and Find Full Text PDFBackground: Ependymomas (EPNs) are the third most common brain tumor in children. These tumors are resistant to available chemotherapeutic treatments, therefore new effective targeted therapeutics must be identified. Increasing evidence shows epigenetic alterations including histone posttranslational modifications (PTMs), are associated with malignancy, chemotherapeutic resistance and prognosis for pediatric EPNs.
View Article and Find Full Text PDFHuman glioma, in particular, malignant forms such as glioblastoma exhibit dismal survival rates despite advances in treatment strategies. A population of glioma cells with stem-like features, glioma cancer stem-like cells (GCSCs), contribute to renewal and maintenance of the tumor cell population and appear responsible for chemotherapeutic and radiation resistance. Bone morphogenetic protein 4 (BMP4), drives differentiation of GCSCs and thus improves therapeutic efficacy.
View Article and Find Full Text PDFBackground: Pilocytic astrocytomas (PAs) are the most common pediatric central nervous system neoplasms. In the majority of cases these tumors are benign and receive favorable prognosis following gross total surgical resection. In patients with progressive or symptomatic tumors, aggressive surgical resection is generally not feasible, thus radiation or chemotherapy are accepted initial or adjuvant interventions.
View Article and Find Full Text PDFPrenatal folic acid (FA) supplementation prevents neural tube defects. Folate receptor alpha (FRα) is critical for embryonic development, including neural crest (NC) development. Previously we showed that FRα translocates to the nucleus in response to FA, where it acts as a transcription factor.
View Article and Find Full Text PDFPurpose: Maternal folate intake has reduced the incidence of human neural tube defects by 60-70 %. However, 30-40 % of cases remain nonresponsive to folate intake. The main purpose of this study was to understand the molecular mechanism of folate nonresponsiveness in a mouse model of neural tube defect.
View Article and Find Full Text PDFObject: The authors sought to identify novel biomarkers for early detection of neural tube defects (NTDs) in human fetuses.
Methods: Amniotic fluid and serum were drawn from women in the second trimester of pregnancy. The study group included 2 women pregnant with normal fetuses and 4 with fetuses displaying myelomeningocele (n = 1), anencephaly (n = 1), holoprosencephaly (n = 1), or encephalocele (n = 1).
Unlabelled: This study examined a novel drug delivery system for treatment of malignant brain gliomas: DOX complexed with nanodiamonds (ND-Dox), and administered via convection-enhanced delivery (CED). Drug retention and toxicity were examined in glioma cell lines, and distribution, retention and toxicity were examined in normal rat parenchyma. Efficacy was assessed in a bioluminescence rodent tumor model.
View Article and Find Full Text PDFObjective: This study investigated epigenetic modifications in human central nervous system atypical teratoid rhabdoid tumors (AT/RTs), in response to inhibition of insulin-like growth factor receptor 1 (IGF-1R).
Materials And Methods: Tumor tissue was obtained from two pediatric patients, tissue was dissociated, and primary cultures were established. Cultured cells were treated with picropodophyllin (PPP; 0, 1, and 2 μM for 48 h), a selective IGF-1R inhibitor.
Folic acid (FA) has traditionally been associated with prevention of neural tube defects; more recent work suggests that it may also be involved in in the prevention of adult onset diseases. As the role of FA in human health and disease expands, it also becomes more critical to understand the mechanisms behind FA action. In this work we examined the hypothesis that folate receptor alpha (FRα) acts as a transcription factor.
View Article and Find Full Text PDFMaternal folic acid (FA) intake has beneficial effects in preventing neural tube defects and may also play a role in the prevention of adult onset diseases such as Alzheimer's disease, dementia, neuropsychiatric disorders, cardiovascular diseases, and cerebral ischemia. This review will focus on the effects of maternal FA intake on neural crest stem cell proliferation and differentiation. Although FA is generally considered beneficial, it has the potential of promoting cell proliferation at the expense of differentiation.
View Article and Find Full Text PDFThe epigenetic mechanism of folic acid (FA) action on dorsal root ganglion (DRG) cell proliferation and sensory neuron differentiation is not well understood. In this study, the ND7 cell line, derived from DRG cells, was used to elucidate this mechanism. In ND7 cells differentiated with dbcAMP and NGF, Hes1 and Pax3 levels decreased, whereas Neurog2 levels showed a modest increase.
View Article and Find Full Text PDFInterstitial chemotherapeutic drug infusion can bypass the blood-brain barrier, and provide high regional drug concentrations without systemic exposure. However, toxicity and efficacy for drugs administered via interstitial continuous (i.c.
View Article and Find Full Text PDFAlthough maternal intake of folic acid (FA) prevents neural tube defects in 70% of the population, the exact mechanism of prevention has not been elucidated. We hypothesized that FA affects neural stem cell (NSC) proliferation and differentiation. This hypothesis was examined in a folate-responsive spina bifida mouse model, Splotch (Sp(-/-)), which has a homozygous loss-of-function mutation in the Pax3 gene.
View Article and Find Full Text PDFPax3 plays a role in regulating Hes1 and Neurog2 activity and thereby stem cell maintenance and neurogenesis. A mechanism for Pax3 regulation of these two opposing events, during caudal neural tube development, is examined in this study. Pax3 acetylation on C-terminal lysine residues K437 and K475 may be critical for proper regulation of Hes1 and Neurog2.
View Article and Find Full Text PDFThe mechanism(s) behind folate rescue of neural tube closure are not well understood. In this study we show that maternal intake of folate prior to conception reverses the proliferation potential of neural crest stem cells in homozygous Splotch embryos (Sp(-/-)) via epigenetic mechanisms. It is also shown that the pattern of differentiation seen in these cells is similar to wild-type (WT).
View Article and Find Full Text PDFObject: Direct delivery of chemotherapeutic agents for the treatment of brain tumors is an area of focus in the development of therapeutic paradigms because this method of delivery circumvents the blood-brain barrier without causing adverse systemic side effects. Few studies have investigated longitudinal tumor response to this type of therapy. In this study, the authors examined the time course of tumor response to direct delivery of a chemotherapeutic agent in a rodent malignant glioma model.
View Article and Find Full Text PDFPurpose: Local direct delivery of chemotherapeutic agents for the treatment of brain tumors is an area of focus in the development of new therapeutic paradigms. These techniques need improvement, especially in terms of drug retention in brain tissue.
Materials And Methods: In this study, we used a rat glioma model to examine carboplatin distribution, as measured by platinum penetration, after delivery via interstitial continuous (i.
Pax3 regulates neural crest cell migration and is critical during neural crest development. TGFbs modify neural crest cell migration and differentiation. TGFbeta2 nullizygous embryos (TGFbeta2(-/-)Pax3(+/+)) display open neural tube and bifid spine, whereas in wild type embryos, the neural tube is closed.
View Article and Find Full Text PDFPax3 is expressed early during embryonic development in spatially restricted domains including limb muscle, neural crest, and neural tube. Pax3 functions at the nodal point in melanocyte stem cell differentiation, cardiogenesis and neurogenesis. Additionally Pax3 has been implicated in migration and differentiation of precursor cell populations.
View Article and Find Full Text PDFPreviously our laboratory identified TGFbeta2 as a potential downstream target of Pax3 by utilizing microarray analysis and promoter data base mining (Mayanil, C. S. K.
View Article and Find Full Text PDFGanglioside GM3 inhibits epidermal growth factor (EGF)-dependent cell proliferation in a variety of cell lines. Both in vitro and in vivo, this glycosphingolipid inhibits the kinase activity of the EGF receptor (EGFR). Furthermore, membrane preparations containing EGFR can bind to GM3-coated surfaces.
View Article and Find Full Text PDF