The American horseshoe crab Limulus polyphemus (Linnaeus, 1758) is one of four extant species of xiphosuran chelicerates, the sister group to arachnids. Because of their position in the arthropod family tree and because they exhibit many plesiomorphic characteristics, Xiphosura are considered a proxy for the euchelicerate ancestor and therefore important for understanding the evolution and diversification of chelicerates and arthropods. Limulus polyphemus is the most extensively studied xiphosuran, and its visual system has long been a focus of studies critical for our understanding of basic mechanisms of vision and the evolution of visual systems in arthropods.
View Article and Find Full Text PDFIntegr Comp Biol
November 2016
The eyes and photoreceptors of the American horseshoe crab Limulus polyphemus have been studied since the 1930s, and this work has been critical for understanding basic mechanisms of vision. One of the attractions of Limulus as a preparation for studies of vision is that it has three different types of eyes-a pair of later compound, image-forming eyes and two types of simple eyes, a pair of median ocelli, and three pair of larval eyes. Each eye type is tractable for experimentation.
View Article and Find Full Text PDFHorseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods.
View Article and Find Full Text PDFThe eyes of the horseshoe crab Limulus polyphemus have long been used for studies of basic mechanisms of vision, and the structure and physiology of Limulus photoreceptors have been examined in detail. Less is known about the opsins Limulus photoreceptors express. We previously characterized a UV opsin (LpUVOps1) that is expressed in all three types of Limulus eyes (lateral compound eyes, median ocelli and larval eyes) and three visible light-sensitive rhabdomeric opsins (LpOps1, -2 and -5) that are expressed in Limulus lateral compound and larval eyes.
View Article and Find Full Text PDFThe eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments.
View Article and Find Full Text PDFDark and light adaptation in photoreceptors involve multiple processes including those that change protein concentrations at photosensitive membranes. Light- and dark-adaptive changes in protein levels at rhabdoms have been described in detail in white-eyed Drosophila maintained under artificial light. Here we tested whether protein levels at rhabdoms change significantly in the highly pigmented lateral eyes of wild-caught Limulus polyphemus maintained in natural diurnal illumination and whether these changes are under circadian control.
View Article and Find Full Text PDFAs class III unconventional myosins are motor proteins with an N-terminal kinase domain, it seems likely they play a role in both signaling and actin based transport. A growing body of evidence indicates that the motor functions of human class IIIA myosin, which has been implicated in progressive hearing loss, are modulated by intermolecular autophosphorylation. However, the phosphorylation sites have not been identified.
View Article and Find Full Text PDFClass III myosins are important for the function and survival of photoreceptors and ciliary hair cells. Although vertebrates possess two class III myosin genes, myo3A and myo3B, recent studies have focused on Myo3A because mutations in the human gene are implicated in progressive hearing loss. Myo3B may compensate for defects in Myo3A, yet little is known about its distribution and function.
View Article and Find Full Text PDFPax6 regulates eye development in many animals. In addition, Pax6 activates atonal transcription factors in both invertebrate and vertebrate eyes. Here, we investigate the roles of Pax6 and atonal during embryonic development of Limulus polyphemus rudimentary lateral, medial and ventral eyes, and the initiation of lateral ommatidial eye and medial ocelli formation.
View Article and Find Full Text PDFClass III unconventional myosins are critical for the normal function of auditory hair cells and the function and maintenance of photoreceptors; however, the roles of class III myosins in these sensory cells are unknown. Class III myosins are unique in that they have a kinase domain at their N-terminus; thus, they may have both signaling and motor functions. In the horseshoe crab Limulus polyphemus, enhanced phosphorylation of an abundant, photoreceptor specific class III myosin at night correlates with well-characterized circadian changes in photoreceptor structure and function.
View Article and Find Full Text PDFLittle is known about the functions of class III unconventional myosins although, with an N-terminal kinase domain, they are potentially both signaling and motor proteins. Limulus myosin III is particularly interesting because it is a phosphoprotein abundant in photoreceptors that becomes more heavily phosphorylated at night by protein kinase A. This enhanced nighttime phosphorylation occurs in response to signals from an endogenous circadian clock and correlates with dramatic changes in photoreceptor structure and function.
View Article and Find Full Text PDFThe visual arrestins in rhabdomeral photoreceptors are multifunctional phosphoproteins. They are rapidly phosphorylated in response to light, but the functional relevance of this phosphorylation is not yet fully understood. The phosphorylation of Limulus visual arrestin is particularly complex in that it becomes phosphorylated on three sites, and one or more of these site are phosphorylated even in the dark.
View Article and Find Full Text PDFMuch has been learned from studies of Limulus photoreceptors about the role of the circadian clock and light in the removal of photosensitive membrane. However, little is known in this animal about mechanisms regulating photosensitive membrane renewal, including the synthesis of proteins in, and associated with, the photosensitive membrane. To begin to understand renewal, this study examines diurnal changes in the levels of mRNAs encoding opsin, the integral membrane protein component of visual pigment, and the relative roles of light and the circadian clock in producing these changes.
View Article and Find Full Text PDFLimulus photoreceptors utilize the phosphoinositide pathway to generate light-induced single photon events (quantum bumps) that sum to form the depolarizing receptor potential. The protein kinase C (PKC) activator, (-)-indolactam V (ILV) rapidly desensitizes the light response in Limulus ventral nerve photoreceptors. Within 10 min of extracellular application, 100 nM (-)-ILV caused a decrease in the mean amplitude of quantum bumps to 38% of control values.
View Article and Find Full Text PDFMicrosc Res Tech
August 2002
Much is known about the anatomy of Limulus retinal efferent neurons and the structural and functional consequences of their activation. Retinal efferent axons arise from cell bodies located in the cheliceral ganglia of the brain, and they project out all of the optic nerves. Their unique neurosecretory-like terminals contact all cell types in lateral eye ommatidia, the retinular cells of the median eye, and the internal rhabdom of ventral photoreceptors.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
September 2002
There is now strong evidence that arthropod photoreceptors use histamine as a neurotransmitter. The synthesis, storage and release of histamine from arthropod photoreceptors have been demonstrated, and the postsynaptic effects of histamine and the endogenous neurotransmitter are similar. However, a full understanding of these photoreceptor synapses also requires knowledge of histamine inactivation and metabolism.
View Article and Find Full Text PDFRhabdom shedding in horseshoe crab lateral eye photoreceptors was studied with anti-opsin and anti-arrestin immunocytochemistry. Two, possibly three, distinct shedding mechanisms were revealed in animals maintained in natural lighting. Transient rhabdom shedding, triggered by dawn, is a brief, synchronous event that removes up to 10% of the rhabdom membrane.
View Article and Find Full Text PDF