Publications by authors named "Barbara Yael Braz"

White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively.

View Article and Find Full Text PDF

Recent evidence has shown that even mild mutations in the Huntingtin gene that are associated with late-onset Huntington's disease (HD) disrupt various aspects of human neurodevelopment. To determine whether these seemingly subtle early defects affect adult neural function, we investigated neural circuit physiology in newborn HD mice. During the first postnatal week, HD mice have less cortical layer 2/3 excitatory synaptic activity than wild-type mice, express fewer glutamatergic receptors, and show sensorimotor deficits.

View Article and Find Full Text PDF

Compelling evidence indicates that in Huntington's disease (HD), mutation of huntingtin (HTT) alters several aspects of early brain development such as synaptogenesis. It is not clear to what extent the partial loss of wild-type HTT function contributes to these abnormalities. Here we investigate the function of HTT in the formation of spines.

View Article and Find Full Text PDF