Publications by authors named "Barbara Y Braz"

White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively.

View Article and Find Full Text PDF

In Parkinson's disease patients and rodent models, dopaminergic neuron loss (DAN) results in severe motor disabilities. In contrast, general motility is preserved after early postnatal DAN loss in rodents. Here we used mice of both sexes to show that the preserved motility observed after early DAN loss depends on functional changes taking place in medium spiny neurons (MSN) of the dorsomedial striatum (DMS) that belong to the direct pathway (dMSN).

View Article and Find Full Text PDF

Recent evidence has shown that even mild mutations in the Huntingtin gene that are associated with late-onset Huntington's disease (HD) disrupt various aspects of human neurodevelopment. To determine whether these seemingly subtle early defects affect adult neural function, we investigated neural circuit physiology in newborn HD mice. During the first postnatal week, HD mice have less cortical layer 2/3 excitatory synaptic activity than wild-type mice, express fewer glutamatergic receptors, and show sensorimotor deficits.

View Article and Find Full Text PDF

Compelling evidence indicates that in Huntington's disease (HD), mutation of huntingtin (HTT) alters several aspects of early brain development such as synaptogenesis. It is not clear to what extent the partial loss of wild-type HTT function contributes to these abnormalities. Here we investigate the function of HTT in the formation of spines.

View Article and Find Full Text PDF

Although Huntington's disease is a late-manifesting neurodegenerative disorder, both mouse studies and neuroimaging studies of presymptomatic mutation carriers suggest that Huntington's disease might affect neurodevelopment. To determine whether this is actually the case, we examined tissue from human fetuses (13 weeks gestation) that carried the Huntington's disease mutation. These tissues showed clear abnormalities in the developing cortex, including mislocalization of mutant huntingtin and junctional complex proteins, defects in neuroprogenitor cell polarity and differentiation, abnormal ciliogenesis, and changes in mitosis and cell cycle progression.

View Article and Find Full Text PDF

Chronic exposure to stress is a major risk factor for neuropsychiatric disease, and elevated plasma corticosterone (CORT) correlates with reduced levels of both brain-derived neurotrophic factor (BDNF) and hippocampal neurogenesis. Precisely how these phenomena are linked, however, remains unclear. Using a cortico-hippocampal network-on-a-chip, we find that the glucocorticoid receptor agonist dexamethasone (DXM) stimulates the cyclin-dependent kinase 5 (CDK5) to phosphorylate huntingtin (HTT) at serines 1181 and 1201 (S1181/1201), which retards BDNF vesicular transport in cortical axons.

View Article and Find Full Text PDF

Repetitive stimulation of cognitive forebrain circuits at frequencies capable of inducing corticostriatal long term plasticity is increasingly being used with therapeutic purposes in patients with neuropsychiatric disorders. However, corticostriatal plasticity is rarely studied in the intact brain. Our aim was to study the mechanisms of corticostriatal long term depression (LTD) induced by high frequency stimulation (HFS) of the medial prefrontal cortex in vivo.

View Article and Find Full Text PDF

The mechanisms underlying social dysfunction in neuropsychiatric conditions such as obsessive-compulsive disorder and Tourette syndrome remain uncertain. However, it is known that dysfunctions in basal ganglia, including a reduced number of striatal cholinergic interneurons (SCIN), are involved in their pathophysiology. To explore the role of SCIN in relation to perseverative behaviors, we characterized a new transgenic mouse model in which inducible ablation of SCIN is achieved with high efficiency in a cell-type- and region-specific manner.

View Article and Find Full Text PDF

Findings showing that neonatal lesions of the forebrain dopaminergic system in rodents lead to juvenile locomotor hyperactivity and learning deficits have been taken as evidence of face validity for the attention deficit hyperactivity disorder. However, the core cognitive and physiological intermediate phenotypes underlying this rodent syndrome remain unknown. Here we show that early postnatal dopaminergic lesions cause long-lasting deficits in exploitation of shelter, social and nutritional resources, and an imbalanced exploratory behavior, where nondirected local exploration is exacerbated, whereas sophisticated search behaviors involving sequences of goal directed actions are degraded.

View Article and Find Full Text PDF
Article Synopsis
  • Evoked striatal field potentials can provide insights into corticostriatal communication, but their origins and significance are not well understood.
  • Infusion of the AMPA receptor antagonist CNQX significantly reduced striatal field responses and showed increased local field responses with stronger stimulating current, exhibiting key properties of corticostriatal transmission.
  • The study demonstrated that blocking GABA(A) receptors with bicuculline increased the duration and intensity of striatal responses to cortical stimulation, highlighting the role of inhibitory connections in regulating striatal network activity.
View Article and Find Full Text PDF