Publications by authors named "Barbara Villarini"

This paper describes the process of developing a classification model for the effective detection of malignant melanoma, an aggressive type of cancer in skin lesions. Primary focus is given on fine-tuning and improving a state-of-the-art convolutional neural network (CNN) to obtain the optimal ROC-AUC score. The study investigates a variety of artificial intelligence (AI) clustering techniques to train the developed models on a combined dataset of images across data from the 2019 and 2020 IIM-ISIC Melanoma Classification Challenges.

View Article and Find Full Text PDF

Accurate, quantitative segmentation of anatomical structures in radiological scans, such as Magnetic Resonance Imaging (MRI) and Computer Tomography (CT), can produce significant biomarkers and can be integrated into computer-aided assisted diagnosis (CADx) systems to support the interpretation of medical images from multi-protocol scanners. However, there are serious challenges towards developing robust automated segmentation techniques, including high variations in anatomical structure and size, the presence of edge-based artefacts, and heavy un-controlled breathing that can produce blurred motion-based artefacts. This paper presents a novel computing approach for automatic organ and muscle segmentation in medical images from multiple modalities by harnessing the advantages of deep learning techniques in a two-part process.

View Article and Find Full Text PDF

There is a growing demand for fast, accurate computation of clinical markers to improve renal function and anatomy assessment with a single study. However, conventional techniques have limitations leading to overestimations of kidney function or failure to provide sufficient spatial resolution to target the disease location. In contrast, the computer-aided analysis of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) could generate significant markers, including the glomerular filtration rate (GFR) and time-intensity curves of the cortex and medulla for determining obstruction in the urinary tract.

View Article and Find Full Text PDF

Dementia is a syndrome that is characterised by the decline of different cognitive abilities. A high rate of deaths and high cost for detection, treatments, and patients care count amongst its consequences. Although there is no cure for dementia, a timely diagnosis helps in obtaining necessary support, appropriate medication, and maintenance, as far as possible, of engagement in intellectual, social, and physical activities.

View Article and Find Full Text PDF

The accurate 3D reconstruction of organs from radiological scans is an essential tool in computer-aided diagnosis (CADx) and plays a critical role in clinical, biomedical and forensic science research. The structure and shape of the organ, combined with morphological measurements such as volume and curvature, can provide significant guidance towards establishing progression or severity of a condition, and thus support improved diagnosis and therapy planning. Furthermore, the classification and stratification of organ abnormalities aim to explore and investigate organ deformations following injury, trauma and illness.

View Article and Find Full Text PDF

Automatic pancreas segmentation in 3D radiological scans is a critical, yet challenging task. As a prerequisite for computer-aided diagnosis (CADx) systems, accurate pancreas segmentation could generate both quantitative and qualitative information towards establishing the severity of a condition, and thus provide additional guidance for therapy planning. Since the pancreas is an organ of high inter-patient anatomical variability, previous segmentation approaches report lower quantitative accuracy scores in comparison to abdominal organs such as the liver or kidneys.

View Article and Find Full Text PDF

Background: Multiparametric magnetic resonance imaging (mpMRI)-targeted prostate biopsies can improve detection of clinically significant prostate cancer and decrease the overdetection of insignificant cancers. It is unknown whether visual-registration targeting is sufficient or augmentation with image-fusion software is needed.

Objective: To assess concordance between the two methods.

View Article and Find Full Text PDF

Purpose: Image-guided systems that fuse magnetic resonance imaging (MRI) with three-dimensional (3D) ultrasound (US) images for performing targeted prostate needle biopsy and minimally invasive treatments for prostate cancer are of increasing clinical interest. To date, a wide range of different accuracy estimation procedures and error metrics have been reported, which makes comparing the performance of different systems difficult.

Methods: A set of nine measures are presented to assess the accuracy of MRI-US image registration, needle positioning, needle guidance, and overall system error, with the aim of providing a methodology for estimating the accuracy of instrument placement using a MR/US-guided transperineal approach.

View Article and Find Full Text PDF