An electrochemical immunosensor based on a nanohybrid film of carboxylated polypyrrole and amine nanoclay was developed for label-free detection of the human cardiac troponin T (cTnT). The nanohybrid film was formed in situ on the surface of the glassy carbon electrode, followed by the covalent immobilization of anti-troponin T antibodies by glutaraldehyde. Morphological and chemical characterizations of the nanohybrid film were performed by scanning electron microscopy and Fourier-transform infrared spectroscopy.
View Article and Find Full Text PDFZika virus (ZIKV) is a mosquito-borne infection, predominant in tropical and subtropical regions causing international concern due to the ZIKV disease having been associated with congenital disabilities, especially microcephaly and other congenital abnormalities in the fetus and newborns. Development of strategies that minimize the devastating impact by monitoring and preventing ZIKV transmission through sexual intercourse, especially in pregnant women, since no vaccine is yet available for the prevention or treatment, is critically important. ZIKV infection is generally asymptomatic and cross-reactivity with dengue virus (DENV) is a global concern.
View Article and Find Full Text PDFA novel electrochemical sensor with inherent redox activity mediated by ferrocene for Cystatin C (CysC), an early kidney failure biomarker, is described. The current response was mediated by graphene oxide-ferrocene nanofilm with redox-activity coming from electroactive species surface-confined. Anti-CysC antibodies were immobilized by their Fc portions on the drop-casting polyethyleneimine (PEI) film for improving the sensitivity and reproducibility.
View Article and Find Full Text PDFThe research for new biomarkers of cancer has studied the role of fetuin glycoprotein on the metastatic disease diagnosis. Cratylia mollis is a lectin with high finity to fetuin, and used here to differentiate prostate cancer and benign prostatic hyperplasia. A label-free electrochemical nanosensor based on assembled carboxylated carbon nanotubes (COOH-CNTs) and poly-L-lysine (PLL) film was developed and applied to serum samples of prostate cancer positive for Gleason score.
View Article and Find Full Text PDFA nano-molecularly imprinted polymer (N-MIP) assembled on a screen-printed electrode for the cardiac troponin T (cTnT) was developed. The biomimetic surface was obtained by a co-polymer matrix assembled on the reduced graphene oxide (RGO) electrode surface. The cTnT active sites were engineered using pyrrole and carboxylated pyrrole that was one-step electropolymerized jointly with cTnT by cyclic voltammetry.
View Article and Find Full Text PDFA simple amino-functionalization method for carbon nanotubes and its application in an electrochemical immunosensor for detection of the human cardiac troponin T are described. Amino-functionalized carbon nanotubes allow oriented antibodies immobilization via their Fc regions, improving the performance of an immunosensor. Herein multiwalled carbon nanotubes were amino-functionalized by using the ethylenediamine reagent and assays were designed by fractional factorial study associated with Doehlert matrix.
View Article and Find Full Text PDFLabel-free immunosensor based on amine-functionalized carbon nanotubes screen-printed electrode is described for detection of the cardiac troponin T, an important marker of acute myocardial infarction. The disposable sensor was fabricated by tightly squeezing an adhesive carbon ink containing carbon nanotubes onto a polyethylene terephthalate substrate forming a thin film. The use of carbon nanotubes increased the reproducibility and stability of the sensor, and the amine groups permitted nonrandom immobilization of antibodies against cardiac troponin T.
View Article and Find Full Text PDFScreen-printed electrodes (SPE) have been widely used in the design of disposable sensors bringing advances in the use of electrochemical immunosensors for in field-clinical analysis. In this work, streptavidin polystyrene microspheres were incorporated to the electrode surface of SPEs in order to increase the analytical response of the cardiac troponin T (cTnT), a specific biomarker for the acute myocardial infarction diagnosis. The precise calculation of the stoichiometric streptavidin-biotin ratio [1:4] allowed the increase of sensitivity and stability of the immunosensor response to the cTnT analyte.
View Article and Find Full Text PDF