Colloids Surf B Biointerfaces
May 2021
Water swellable crosslinked polymers are widely used in oil-in-water emulsions for the healthcare and cosmetic industries due to their thickening properties. In this study, we investigate the rheological and lubrication behavior of a microgel-forming polymer, a lightly-crosslinked hydrophobically modified polyacrylic acid (HMPAA), in an aqueous medium and in an emulsion. Hydrogenated phosphatidylcholine, a class of phospholipids, is used as a surfactant in the emulsions composed of different oil content.
View Article and Find Full Text PDFHypothesis: The rheological behavior and frictional properties (macroscopic level) of systems containing a hydrophobically modified polymer and phospholipids depend on the hydrophobic association that occur between the hydrophobic moiety of the polymer and the phospholipid tails (molecular level). The hydrophobicity of the polymer can thus be used to control its interactions with phospholipids, and manipulate complex gel macroscopic behavior.
Experiments: By using systems composed of a crosslinked hydrophobically modified polyacrylic acid (HMPAA) or a crosslinked polyacrylic acid polymer (PAA) and phospholipids, we examine the underlying mechanisms through which the components interact using isothermal titration calorimetry (ITC) and their effect on rheological and tribological characteristics of complex gels.
Climate changes, emerging species of plant pests, and deficits of clean water and arable land have made availability of food to the ever-increasing global population a challenge. Excessive use of synthetic pesticides to meet ever-increasing production needs has resulted in development of resistance in pest populations, as well as significant ecotoxicity, which has directly and indirectly impacted all life-forms on earth. To meet the goal of providing safe, sufficient, and high-quality food globally with minimal environmental impact, one strategy is to focus on targeted delivery of pesticides using eco-friendly and biodegradable carriers that are derived from naturally available materials.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2020
Hypothesis: We envisage the use of hydroxylated detonation nanodiamonds (ND-OH), a relatively novel carbonaceous filler with high adsorption activity, small size, and large surface area to create Pickering emulsions. The emulsion behavior under shear and the extent to which the microstructure can rebuild after breakdown is dependent on its yield stress.
Experiments: Using a model system consisting of isopropyl palmitate and water stabilized by ND-OH particles, we investigate the stability of these emulsions, their microstructure and rheological behavior as a function of ND-OH concentration.
We present a facile approach to electrospin nanofibers of guar galactomannan by blending high- and low-molecular weights (MWs) of guar. We discover that while neither native high MW guar nor hydrolyzed low MW guar is electrospinnable on its own, their combination leads to synergism in producing defect-free nanofibers. Such an approach of fabricating nanofibers from blending multiple MWs of the same polymer may provide an easy route to produce nanofibers of biopolymers which are typically hard to electrospin.
View Article and Find Full Text PDF