The highly doped electrodes of a vertical silicon nanogap device have been bridged by a 5.85 nm long molecular wire, which was synthesized in situ by grafting 4-ethynylbenzaldehyde via C-Si links to the top and bottom electrodes and thereafter by coupling an amino-terminated fluorene unit to the aldehyde groups of the activated electrode surfaces. The number of bridging molecules is constrained by relying on surface roughness to match the 5.
View Article and Find Full Text PDFWe report the synthesis by Suzuki cross-coupling methodology of oligo(arylene) molecular wires with protected thiolates at both termini and a central electron-acceptor unit (3,5-dinitrofluorenone, compounds 10-12) or an electron-donor unit [9-(1,3-dithiol-2-ylidene)fluorene, compounds 14-17] in the backbone. Core reagents are 2,7-dibromo-3,5-dinitrofluorenone 7 (obtained by nitration of 2,7-dibromofluorenone) and 2,7-dibromo-9-(4,5-dimethyl-1,3-dithiol-2-ylidene)fluorene 13. The solution electrochemical redox properties of these oligo(arylene) derivatives have been studied.
View Article and Find Full Text PDF