Publications by authors named "Barbara Tate"

Neuroinflammation is a key driver of neurodegenerative disease, however the tools available to model this disease biology at the systems level are lacking. We describe a translational drug discovery platform based on organotypic culture of murine cortical brain slices that recapitulate disease-relevant neuroinflammatory biology. After an acute injury response, the brain slices assume a chronic neuroinflammatory state marked by transcriptomic profiles indicative of activation of microglia and astrocytes and loss of neuronal function.

View Article and Find Full Text PDF

Increased healthcare and pharmaceutical understanding has led to the eradication of many childhood, infectious and preventable diseases; however, we are now experiencing the impact of aging disorders as the lifespan increases. These disorders have already become a major burden on society and threaten to become a defining challenge of our generation. Indications such as Alzheimer's disease gain headlines and have focused the thinking of many towards dementia and cognitive decline in aging.

View Article and Find Full Text PDF

The recent approval of a therapeutic for a circadian disorder has increased interest in developing additional medicines for disorders characterized by circadian disruption. However, previous experience demonstrates that drug development for central nervous system (CNS) disorders has a high failure rate. Personalized medicine, or the approach to identifying the right treatment for the right patient, has recently become the standard for drug development in the oncology field.

View Article and Find Full Text PDF

Early lead compounds in this gamma secretase modulator series were found to potently inhibit CYP3A4 and other human CYP isoforms increasing their risk of causing drug-drug-interactions (DDIs). Using structure-activity relationships and CYP3A4 structural information, analogs were developed that minimized this DDI potential. Three of these new analogs were further characterized by rat PK, rat PK/PD and rat exploratory toxicity studies resulting in selection of SPI-1865 (14) as a preclinical development candidate.

View Article and Find Full Text PDF

Introduction: Modulation of the gamma-secretase enzyme, which reduces the production of the amyloidogenic Aβ42 peptide while sparing the production of other Aβ species, is a promising therapeutic approach for the treatment of Alzheimer's disease. Satori has identified a unique class of small molecule gamma-secretase modulators (GSMs) capable of decreasing Aβ42 levels in cellular and rodent model systems. The compound class exhibits potency in the nM range in vitro and is selective for lowering Aβ42 and Aβ38 while sparing Aβ40 and total Aβ levels.

View Article and Find Full Text PDF

The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)-formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline-are triggered by Aβ peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al.

View Article and Find Full Text PDF

γ-Secretase modulators (GSM), which reduce amyloidogenic Aβ(42) production while maintaining total Aβ levels, and Notch-sparing γ-secretase inhibitors (GSIs) are promising therapies for the treatment of Alzheimer's Disease (AD). To have a safety margin for therapeutic use, GSMs and GSIs need to allow Notch intracellular domain (NICD) production, while preventing neurotoxic Aβ peptide production. Typically, GSI and GSM effects on these substrates are determined using two different cell lines, one for the measurement of enzyme activity against each substrate.

View Article and Find Full Text PDF

The discovery of a new series of γ-secretase modulators is disclosed. Starting from a triterpene glycoside γ-secretase modulator that gave a very low brain-to-plasma ratio, initial SAR and optimization involved replacement of a pendant sugar with a series of morpholines. This modification led to two compounds with significantly improved central nervous system (CNS) exposure.

View Article and Find Full Text PDF

A series of triterpene-based γ-secretase modulators is optimized. An acetate present at the C24 position of the natural product was replaced with either carbamates or ethers to provide compounds with better metabolic stability. With one of those pharmacophores in place at C24, morpholines or carbamates were installed at the C3 position to refine the physicochemical properties of the analogues.

View Article and Find Full Text PDF

Purpose: Phosphodiesterase 5A (PDE5A) inhibitors improve functional recovery in experimental models of stroke in rats when treatment is delayed and without effect on infarct volume. PDE5A is expressed to only a very limited extent in forebrain tissues, raising the possibility that the locus of effect for the inhibitors is outside the brain. To start to address this question, we determined whether PDE5A inhibitors must have the ability to cross the blood brain barrier to improve recovery.

View Article and Find Full Text PDF

Advances in imaging technology have enabled automated approaches for quantitative image analysis. In this study, a high content object based image analysis method was developed for quantification of β-amyloid (Aβ) plaques in postmortem brains of Alzheimer's disease (AD) subjects and in transgenic mice over overexpressing Aβ. Digital images acquired from immunohistochemically stained sections of the superior frontal gyrus were analyzed for Aβ plaque burden using a Definiens object-based segmentation approach.

View Article and Find Full Text PDF
Article Synopsis
  • - A new group of tetralin-based amino imidazoles was developed by modifying existing phenyl acetic acid compounds, leading to promising candidates.
  • - The best candidates showed strong effects on decreasing brain Aβ levels in guinea pigs, indicating potential therapeutic benefits without harming B-cells.
  • - The most effective compound identified, 14f (PF-3084014), was chosen for further clinical trials after optimizing dosage to target brain Aβ concentrations.
View Article and Find Full Text PDF

The synthesis and structure-activity relationship (SAR) of a novel series of di-substituted imidazoles, derived from modification of DAPT, are described. Subsequent optimization led to identification of a highly potent series of inhibitors that contain a β-amine in the imidazole side-chain resulting in a robust in vivo reduction of plasma and brain Aβ in guinea pigs. The therapeutic index between Aβ reductions and changes in B-cell populations were studied for compound 10 h.

View Article and Find Full Text PDF

Introduction: Casein kinase I epsilon/delta phosphorylates certain clock-related proteins as part of a complex arrangement of transcriptional/translational feedback loops that comprise the circadian oscillator in mammals. Pharmacologic inhibition leads to a delay of the oscillations with the magnitude of this effect dependent upon the timing of drug administration.

Objective: Earlier studies by our lab described the actions of a selective CKI epsilon/delta inhibitor, PF-670462, on circadian behavior following acute dosing; the present work extended these studies to chronic once-daily treatment.

View Article and Find Full Text PDF
Article Synopsis
  • - PF-3084014 is a new gamma-secretase inhibitor that effectively reduces amyloid-beta (Abeta) production in both whole-cell and cell-free assays, showing an impressive potency with IC(50) values ranging from 1.2 nM to 6.2 nM.
  • - In animal studies, PF-3084014 led to significant dose-dependent reductions in brain, cerebrospinal fluid (CSF), and plasma levels of Abeta in Tg2576 mice and guinea pigs, indicating promising effects on Abeta dynamics.
  • - Unlike other gamma-secretase inhibitors, PF-3084014 did not increase Abeta levels in various media and preferentially decreased Abeta1-40 relative to Abeta1-
View Article and Find Full Text PDF

Phosphodiesterase 5A (PDE5A) inhibitors improve functional recovery after middle cerebral artery occlusion (MCA-o) in rats. We used the PDE5A inhibitor 3-(4-(2-hydroxyethyl)piperazin-1-yl)-7-(6-methoxypyridin-3-yl)-1-(2-propoxyethyl)pyrido[3,4-b]pyrazin-2(1H)-one hydrochloride (PF-5) to determine the timing, duration, and degree of inhibition that yields maximum efficacy. We also investigated the localization of PDE5A to determine the tissues and cells that would be targets for PDE5 inhibition and that may mediate efficacy.

View Article and Find Full Text PDF

The degu (Octodon degus) is a diurnal rodent, although phase inversions to nocturnal behavior have been reported under specific laboratory conditions. The reliability of this animal as a diurnal model of sleep therefore requires further characterization of intrinsic circadian pacemaker properties. A phase response curve to light has been reported in the degu, and is consistent with other diurnal animals.

View Article and Find Full Text PDF

Casein kinase Iepsilon (CKIepsilon) is an essential component of the biological clock, phosphorylating PER proteins, and in doing so regulating their turnover and nuclear entry in oscillator cells of the suprachiasmatic nucleus (SCN). Although hereditary decreases in PER phosphorylation have been well characterized, little is known about the consequences of acute enzyme inhibition by pharmacological means. A novel reagent, 4-[3-cyclohexyl-5-(4-fluoro-phenyl)-3H-imidazol-4-yl]-pyrimidin-2-ylamine (PF-670462), proved to be both a potent (IC(50) = 7.

View Article and Find Full Text PDF

beta-Amyloid peptides, tentatively regarded as the principal neurotoxins responsible for Alzheimer's Disease, make up a set of products that varies significantly among different biological systems. The full implications of this complexity and its variations have yet to be defined. In this work, Abeta peptide populations were extracted from animal brain tissue or cell-conditioned media, immunoprecipitated with specific antibodies, and analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry.

View Article and Find Full Text PDF

LY-450139 is a gamma-secretase inhibitor shown to have efficacy in multiple cellular and animal models. Paradoxically, robust elevations of plasma amyloid-beta (Abeta) have been reported in dogs and humans after administration of subefficacious doses. The present study sought to further evaluate Abeta responses to LY-450139 in the guinea pig, a nontransgenic model that has an Abeta sequence identical to that of human.

View Article and Find Full Text PDF

Membrane-bound endosomal vesicles play an integral role in multiple cellular events, including protein processing and turnover, and often critically regulate the cell-surface availability of receptors and other plasma membrane proteins in many different cell types. Neurons are no exception, being dependent on endosomal function for housekeeping and synaptic events. Growing evidence suggests a link between neuronal endosomal function and Alzheimer's disease (AD) pathophysiology.

View Article and Find Full Text PDF