There is a critical need to identify new therapeutic vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). Transcriptional co-regulators C-terminal binding proteins (CtBP) 1 and 2 are highly overexpressed in human PDAC, and CRISPR-based homozygous deletion of Ctbp2 in a mouse PDAC cell line (CKP) dramatically decreased tumor growth, reduced metastasis, and prolonged survival in orthotopic mouse allografts. Transcriptomic profiling of tumors derived from CKP vs.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2023
Radiation-induced lung injury (RILI) is a consequence of therapeutic thoracic irradiation (TR) for many cancers, and there are no FDA-approved curative strategies. Studies report that 80% of patients who undergo TR will have CT-detectable interstitial lung abnormalities, and strategies to limit the risk of RILI may make radiotherapy less effective at treating cancer. Our lab and others have reported that lung tissue from patients with idiopathic pulmonary fibrosis (IPF) exhibits metabolic defects including increased glycolysis and lactate production.
View Article and Find Full Text PDFCtbp2 is a uniquely targetable oncogenic transcriptional coregulator, exhibiting overexpression in most common solid tumors, and critical to the tumor-initiating cell (TIC) transcriptional program. In the "CKP" mouse pancreatic ductal adenocarcinoma (PDAC) model driven by mutant K-Ras, Ctbp2 haploinsufficiency prolonged survival, abrogated peritoneal metastasis, and caused dramatic downregulation of c-Myc, a known critical dependency for TIC activity and tumor progression in PDAC. A small-molecule inhibitor of CtBP2, 4-chloro-hydroxyimino phenylpyruvate (4-Cl-HIPP) phenocopied Ctbp2 deletion, decreasing tumor burden similarly to gemcitabine, and the combination of 4-Cl-HIPP and gemcitabine further synergistically suppressed tumor growth.
View Article and Find Full Text PDFThe control of p53 protein stability is critical to its tumor suppressor functions. The CREB binding protein (CBP) transcriptional co-activator co-operates with MDM2 to maintain normally low physiological p53 levels in cells via exclusively cytoplasmic E4 polyubiquitination activity. Using mass spectrometry to identify nuclear and cytoplasmic CBP-interacting proteins that regulate compartmentalized CBP E4 activity, we identified deleted in breast cancer 1 (DBC1) as a stoichiometric CBP-interacting protein that negatively regulates CBP-dependent p53 polyubiquitination, stabilizes p53, and augments p53-dependent apoptosis.
View Article and Find Full Text PDFCellular cholesterol homeostasis is increasingly being recognized as an important determinant of the inflammatory status of macrophages, and a decrease in cellular cholesterol levels polarizes macrophages toward an anti-inflammatory or M2 phenotype. Cholesteryl ester hydrolase (CEH) catalyzes the hydrolysis of stored intracellular cholesteryl esters (CE) and thereby enhances free cholesterol efflux and reduces cellular CE content. We have reported earlier reduced atherosclerosis as well as lesion necrosis and improved insulin sensitivity (due to decreased adipose tissue inflammation) in macrophage-specific CEH transgenic (CEHTg) mice in the LDLR(-/-) background.
View Article and Find Full Text PDFStudies have shown that the TOM1 family of proteins, including TOM1 and TOM1L1, are actively involved in endosomal trafficking and function in the immune response. However, much less is known about the function of TOM1L2. To understand the biological importance of TOM1L2 and the potential significance of its cellular role, we created and evaluated Tom1l2 gene-trapped mice with reduced Tom1l2 expression.
View Article and Find Full Text PDFDuplications of 17(p11.2p11.2) have been associated with various behavioral manifestations including attention deficits, obsessive-compulsive symptoms, autistic traits, and language delay.
View Article and Find Full Text PDFSmith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation disorder characterized by distinct craniofacial features and neurobehavioral abnormalities usually associated with an interstitial deletion in 17p11.2. Heterozygous point mutations in the retinoic acid induced 1 gene (RAI1) have been reported in nine SMS patients without a deletion detectable by fluorescent in situ hybridization (FISH), implicating RAI1 haploinsufficiency as the cause of the major clinical features in SMS.
View Article and Find Full Text PDFPurpose: Smith-Magenis syndrome (SMS) is a complex disorder that includes mental retardation, craniofacial and skeletal anomalies, and behavioral abnormalities. We report the molecular and genotype-phenotype analyses of 31 patients with SMS who carry 17p11.2 deletions or mutations in the RAI1 gene.
View Article and Find Full Text PDFRecent reports link Kaposi sarcoma-associated herpesvirus (KSHV) infection of bone marrow cells to bone marrow failure and lymphoproliferative syndromes. The identity of the infected marrow cells, however, remains unclear. Other work has demonstrated that circulating mononuclear cells can harbor KSHV where its detection predicts the onset and severity of Kaposi sarcoma.
View Article and Find Full Text PDF