Mycotoxin Res
August 2023
Female pigs respond sensitive both to DON and ZEN with anorexia and endocrine disruption, respectively, when critical diet concentrations are exceeded. Therefore, the frequent co-contamination of feed by DON and ZEN requires their parallel inactivation. The additive ZenA hydrolyzes ZEN while SBS inactivates DON through sulfonation.
View Article and Find Full Text PDFAnimal feeds are often contaminated with ochratoxin A (OTA), a potent natural mycotoxin hazardous to animal and human health that accumulates in blood and tissues. To the best of our knowledge, this study is the first to investigate the in vivo application of an enzyme (OTA amidohydrolase; OAH) that degrades OTA into the nontoxic molecules phenylalanine and ochratoxin α (OTα) in the gastrointestinal tract (GIT) of pigs. Piglets were fed six experimental diets over 14 days, varying in OTA contamination level (50 or 500 μg/kg; OTA50 and OTA500) and presence of OAH; a negative control diet (no OTA added) and a diet containing OTα at 318 µg/kg (OTα318).
View Article and Find Full Text PDFOchratoxin A (OTA) is one of the major mycotoxins causing severe effects on the health of humans and animals. Ochratoxin alpha (OTα) is a metabolite of OTA, which is produced through microbial or enzymatic hydrolysis, and one of the preferred routes of OTA detoxification. The methods described here are applicable for the extraction and quantification of OTA and OTα in several pig and poultry matrices such as feed, feces/excreta, urine, plasma, dried blood spots, and tissue samples such as liver, kidney, muscle, skin, and fat.
View Article and Find Full Text PDFOchratoxin A (OTA), a mycotoxin that is of utmost concern in food and feed safety, is produced by fungal species that mainly belong to the and genera. The development of mitigation strategies to reduce OTA content along the supply chains is key to ensuring safer production of food and feed. Enzyme-based strategies are among the most promising methods due to their specificity, efficacy, and multi-situ applicability.
View Article and Find Full Text PDFPPT1-related neuronal ceroid lipofuscinosis (NCL) is a lysosomal storage disorder caused by deficiency in a soluble lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1). Enzyme replacement therapy (ERT) has not been previously examined in a preclinical animal model. Homozygous PPT1 knockout mice reproduce the known features of the disease, developing signs of motor dysfunction at 5 months of age and death by around 8 months.
View Article and Find Full Text PDF